• Title/Summary/Keyword: bend strength

Search Result 140, Processing Time 0.025 seconds

A Study on the Mechanical Properties of SM490A by FCAW Welding Attitude (SM490A의 FCAW 용접 자세별 형상에 관한 기계적 특성 연구)

  • Lim, Kwang Mook;Lee, Sung Ill
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.7-12
    • /
    • 2019
  • Flux Cored Arc Welding (FCAW), which has been widely used in many industries, was developed in the 1950s to supplement shortcomings of the Shielded Metal Arc Welding (SMAW). FCAW has an advantage in that it can weld regardless of postures and give good quality results in the filed with many different working conditions. In this study, SM490A (rolled steel for welding structural purpose) with different thicknesses (L:25T+R:30T) were welded using FCAW. Then the mechanical properties (tension test, bending test, hardness test, impact test and macro test) were analyzed and the following conclusions were drawn. In the tensile test, it exceeds the KS standard tensile strength range (400~510) in all welding positions, which means there is a problem in the tensile force transmission performance. In the bending test, it was found that most of the specimens did not exhibit surface rupture or other defects during bending test and they exhibit sufficient toughness even after plastic deformation. In the hardness test, all the results were lower than the standard value of 350 Hv of KS B 0893, which means they have good hardness. In the impact test, all results were larger than the KS reference value of 27J. In the macro test, they showed uniform structure state by the shape of the weld, and there was risk of lamination because no internal defects, bubbles, or impurities were found on the surface of the weld.

Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region (Ni-Mo-Cr계 저합금강의 천이온도영역에서의 파괴인성에 미치는 Ni 및 Cr 함량의 영향)

  • Lee, Ki-Hyoung;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.533-541
    • /
    • 2009
  • Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

Correlation between BMI and Physical Fitness of College Women in Seoul

  • Na, Hye-Bok;Kim, Hyun-Jung;Park, Kyung-Soon
    • Journal of Community Nutrition
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • This study investigated the correlation of the physical measurements and the basic physical fitness of 158 female students in the city of Seoul. The average age of the subjects was 22.0 ${\pm}$ 0.13 years old, the average height was 160.9 ${\pm}$ 0.7cm and the average weight was 53.4 ${\pm}$ 0.6kg. The mean BMI (Body Mass Index) was 20.7 ${\pm}$ 0.2kg/㎡. The average muscle mass was 36.5 ${\pm}$ 0.3 and the average body fat percentage was 28.0 ${\pm}$ 0.4%. The basic fitness levels of the subjects were measured based on the evaluation chart of the Korea Health and Science Research Institution (1994). The subjects were divided into 3 groups based on BMI(Group I : BMI < 20, Group II : 20 $\leq$ BMI < 25, Group III BMI $\geq$ 25) and the correlation between BMI and physical fitness was assessed. 1) The muscle strength of the subjects was measured by their grip strength, among other tests. Groups 1 and 2 were evaluated as “su” (level 1) and group 3 was “woo” (level 2). 2) Endurance 1 was tested by push-ups, and while groups 1 and 2 were evaluated as “su” (level 1), group 3 was “ga” (level 5). This result did not suggest any significant relevance among the subjects. 3) Endurance 2 was tested by sit-ups : groups 1 and 2 were evaluated as “mi” (level 3) and group 3 as “yang” (level 4). Group 2 and group 3 showed a significant difference. 4) Instant power was tested by standing high jumps, and although there was a significant difference between group 1 and group 3, all of the subjects were evaluated as “ga” (level 5). 5) Flexibility was measured by how far the subjects could bend forward. There was no significant relevance between the groups and they were all respectively evaluated as “woo” (level 2). 6) Agility was tested with side-steps and all the subjects showed poor agility as “yang” (level 4). 7) Heart and lung endurance was tested by the step test, calculating the maximum oxygen intake with the Physical Energy Index (PEI) and using the numbers according to the evaluation chart. Group 1 was evaluated as “mi” (level 3) and groups 2 and 3 were “woo” (level 2). From these results, we could see the group III (obese group) had a tendency of lower levels in all the variables related to body fitness They showed significantly lower endurance assessed with time for sit-ups and instant power by the standing high jumps. (J Community Nutrition 5(1) : 29∼36, 2003)

Evaluation of Acoustic Emission Signals Characteristics of Post Weld Heat Treated Multi-Pass Weld Block for SA-516 Pressure Vesssel Steel (SA-516강 다층용접부 용접후 열처리재의 음향방출신호 특성 평가)

  • Na, Eui-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.529-535
    • /
    • 2011
  • In this study, evaluation of acoustic emission signals characteristics for the post weld heat treated (PWHT) multi-pass weldment and weldment was dealt. Charpy standard specimens were taken from the lowest, middle and highest regions of the weld block. Pre-crack was made using the repeated load. Four point bend and AE tests were conducted simultaneously. Regardless of the specimens, AE signals were absent within elastic region and produced in the process of plastic deformation. AE signals for all specimens were not emitted after the maximum load. Value of signal strength for the all PWHT specimens was lower than that of the weldment. Besides, relations of plastic deformation zone size and accumulated AE counts for the PWHT specimens were more simple compared with the weldment. In case of the PWHT specimen, particles on the fractured surface decreased prominently compared with the weldment due.to PWHT. From these results, it can be concluded that PWHT was effective in reducing the AE sources for the weldment.

Hydrothermal Synthesis and Mechanical Characterization of ZrO2 by Y2O3 Stabilizer Contents (Y2O3안정화제 첨가량에 따라 수열합성법으로 제조된 ZrO2-Xmol% Y2O3분말의 합성 및 기계적 특성)

  • Lee, Hak-Joo;Kim, Taik-Nam;Bea, Sung-Chul;Go, Myung-Won;Ryu, Jae-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.518-523
    • /
    • 2010
  • In this study, partially stabilized zirconia was synthesized using a chemical $Y_2O_3$ stabilizer and hydrothermal method. First, $YCl_3-6H_2O$ and $ZrCl_2O-8H_2O$ was dissolved in distilled water. Y-TZP (a $Y_2O_3$-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of $NH_4OH$ solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove $Cl^-$ ions. $ZrO_2$-Xmol%$Y_2O_3$ powder was synthesized by a hydrothermal method using Teflon Vessels at $180^{\circ}C$ for 6 h of optimized condition. The powder added with the Xmol%- $Y_2O_3$ (X = 0,1,3,5 mol%) stabilizer of the $ZrO_2$ was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of $33mm{\times}8mm{\times}3$ mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% $Y_2O_3$. The $3Y-ZrO_2$ agglomerated particle size was measured at $7.01{\mu}m$. The agglomerated particle was clearly observed in the sample of 5 mol % $Y_2O_3-ZrO_2$, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% $Y_2O_3-ZrO_2$. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% $Y_2O_3-ZrO_2$.

An Experimental Study on the Structural Behavior of Concrete Columns Confined with Welded Reinforcement Grids (용접 띠철근 보강된 콘크리트 기둥의 역학적 거동에 관한 실험적 연구)

  • Choi, Chang-Sik;Saatcioglu, Murat
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.187-196
    • /
    • 1999
  • An experimental investigation was conducted to study the structural behavior of concrete columns confined with welded grids. The full-scale columns with different volumetric ratio, spacing and arrangement of welded reinforcement grids were tested under simulated seismic loading. The columns were subjected to constant axial compression of approximately 20% or 40% of their capacities accompanied by incrementally increasing lateral deformation reversals. The results indicate that the welded reinforcement grid can be used effectively as confinement reinforcement provided that the steel used, have sufficient ductility and the welding process employed does not alter the strength and elongation characteristics of steel. The grids improved the structural performance of columns, which developed lateral drift ratios in excess of 3% with the spacing and volumetric ratio of transverse reinforcement similar to those required by the ACI 318-95 Building Code. Drift capacity further increased when grids with larger number of cells were used. Furthermore, the use of grids reduced congesting of reinforcement while the dimensional accuracy provided perfect support to longitudinal reinforcement.

The Analysis of Early Age Properties of Hydration Heat and Autogenous Shrinkage according to Specimen Size and Retardation of Hydration (시험체 크기 및 수화지연 효과에 따른 초기재령 수화발열 및 자기수축 특성 분석)

  • Kim, Gyu-Yong;Koo, Kyung-Mo;Lee, Hyoung-Jun;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.481-488
    • /
    • 2009
  • It has been reported that the magnitude and the development rate of autogenous shrinkage of cement paste, mortar and concrete were affected by history and magnitude of inner temperature at an early age. But it was not enough to explain the relation between hydration heat and autogenous shrinkage at an early age, because there was no certain analysis on histories of hydration heat and autogenous shrinkage in previous studies. In our prior study, to understand the relationship between hydration heat and autogenous shrinkage of concrete at an early age, the analysis method for histories of hydration heat and autogenous shrinkage was suggested. Based on this method, early age properties of hydration heat and autogenous shrinkage of high strength concrete with different sizes and hydration retardation were investigated in this study. As a result of the study, properties of hydration temperature and autogenous shrinkage were different according to specimen size and hydration retardation. However, there was a close relationship between hydration temperature and autogenous shrinkage at an early age, especially between HHV and ASV as linear slopes of the sections where hydration temperature and autogenous shrinkage increase rapidly; the higher HHV, the higher ASV and the greater ultimate autogenous shrinkage. And it was found that, among the setting time, bend point and temperature increasing point, they were close relationship each other on cement hydration process.

Effects of Transverse Reinforcement on Headed Bars with Large Diameter at Cut-off Points (컷오프 구간에 정착된 대구경 확대머리철근에 대한 횡보강근의 효과)

  • Jung, Hyung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.82-90
    • /
    • 2018
  • The nuclear structures are composed of large diameter bars over No.36. If the hooked bars are used for anchorage of large diameter bars, too long length of the tail extension of the hook plus bend create congestion and make an element difficult to construct. To address those problems, headed bars were developed. Provisions of ACI 318-08 specify the development length of headed bars and ignore the effect of transverse reinforcement based on the background researches. However, if headed bars are used at the cut-off or lap splice, longitudinal reinforcements, which are deformed in flexural members, induce tensile stress in cover concrete and increase the tensile force in the transverse reinforcement. The object of this research is to evaluate the effects of transverse reinforcement on the anchorage capacity of headed bar so anchorage test with variable of transverse rebar spacing was conducted. Specimens, which can consider the behavior at the cut-off, were tested. Test results show that failure of specimen without transverse reinforcement was sudden and brittle with concrete cover lifted and developed stress of headed bars was less than half of yield strength of headed bars. On the other hand, in the specimen with transverse reinforcement, transverse rebar directly resist the load of free-end so capacity of specimens highly increased.

Biomechanical Analysis of a Combined Interspinous Spacer with a Posterior Lumbar Fusion with Pedicle Screws (척추경나사못을 이용한 유합술과 동반 시술된 극돌기간 삽입기구의 생체역학적 연구)

  • Kim, Y.H.;Park, E.Y.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.276-282
    • /
    • 2015
  • Recently, during the multi-level fusion with pedicle screws, interspinous spacer are sometimes substituted for the most superior level of the fusion in an attempt to reduce the number of fusion level and likelihood of degeneration process at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the interspinous spacer combined with posterior lumbar fusion with a previously-validated 3-dimensional FE model of the intact lumbar spine (L1-S1). The post-operative models were made by modifying the intact model to simulate the implantation of interspinous spacer and pedicle screws at the L3-4 and L4-5. Four different configurations of the post-op model were considered: (1) a normal spinal model; (2) Type 1, one-level fusion using posterior pedicle screws at the L4-5; (3) Type 2, two-level (L3-5) fusion; (4) Type 3, Type 1 plus Coflex$^{TM}$ at the L3-4. hybrid protocol (intact: 10 Nm) with a compressive follower load of 400N were used to flex, extend, axially rotate and laterally bend the FE model. As compared to the intact model, Type 2 showed the greatest increase in Range of motion (ROM) at the adjacent level (L2-3), followed Type 3, and Type 1 depending on the loading type. At L3-4, ROM of Type 2 was reduced by 34~56% regardless of loading mode, as compared to decrease of 55% in Type 3 only in extension. In case of normal bone strength model (Type 3_Normal), PVMS at the process and the pedicle remained less than 20% of their yield strengths regardless of loading, except in extension (about 35%). However, for the osteoporotic model (Type 3_Osteoporotic), it reached up to 56% in extension indicating increased susceptibility to fracture. This study suggested that substitution of the superior level fusion with the interspinous spacer in multi-level fusion may be able to offer similar biomechanical outcome and stability while reducing likelihood of adjacent level degeneration.