• Title/Summary/Keyword: bend strength

Search Result 140, Processing Time 0.02 seconds

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

Evaluation of Residual Strength in Damaged Brittle Materials (취성재의 손상후 잔류강도 평가)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.137-142
    • /
    • 2001
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are often subjected to multiaxial stress. Brittle materials with crack or damaged by foreign object impacts are abruptly fractured from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength has been derived from tests under uniaxial stress such as a 4-point bend test. The strengths under multiaxial stresses might be different from the strength. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test. In the case that crack having 90deg. to loading direction, the ratio of biaxial to uniaxial flexure strength was 1.12. At a different crack angle to loading direction when it was evaluated by the 4-point bend test, the residual strength was different and the ratio of 45deg. to 90deg. was 1.16.

  • PDF

Bend Resistance of Polymer Cement Slurry Coated Reinforcing Bars

  • Kim, Wan-Ki;Chang, Sung-Ju;Kim, Hyun-Ki;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.42-48
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by both the adhesion strength between bar and coating materials, and the followed transformation of coating material as bars bend. Especially, tearing state or partial microscopic cracks are predicted on the inside and outside of bending angle, because tensile strength and elongation of polymer film are very different according to types of polymer dispersions in bar coating, and these damaged parts are rapidly corroded by penetration of corrosive factors. In this study, polymer cement slurry coated reinforcing bars with various polymer dispersions are prepared by following combined conditions, polymer-cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 28days. Then the specimens are tested for working life and bend resistance at bending angles $90^{\circ}$, $135^{\circ}$and $180^{\circ}$ to observe the microscopic damage effect as the bars bend. Also, epoxy-coated reinforcing bars for control experiment were used with 250$\mu$m of coating thickness. The tensile strength for polymer films is performed. From the test results, the working life of the polymer cement slurry is within 90 seconds. Among four types of polymer dispersion, polymer cement slurry coated reinforcing bar using St/BA-1 emulsion has the excellent bend resistance, which is remarkably improved than that of epoxy-coated reinforcing bar. And the bend resistance is more related to elongation than tensile strength of polymer film. Polymer cement slurry with a polymer-cement ratio of 100%, a coating thickness of $450\mu$m and one coating using St/BA emulsion is selected as a most suitable coating material for coated reinforcing bar.

  • PDF

Machinability and Strength of AlN-BN Ceramics (AlN-BN계 세라믹스의 기계가공성과 강도)

  • 감직상;하정수;정덕수;한경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.177-184
    • /
    • 1994
  • AlN-BN ceramics with BN contents in the range of 10 to 40 wt% were prepared by hot pressing using no additive, or 3 wt%, Y2O3 or CaO, which are common densification aids for AlN. And their machinability, bend strength, and microstructures were investigated. Both the main and radial cutting forces decreased with increasing BN content in all three kinds of samples. For the BN contents of 30 wt% or above, the cutting forces were lower than that of a mild steel tested at a same condition. Especially in the case of main forces, the values were less than a quarter of that of a mild steel, indicating excellent machinability. Bend strength (when the tensile surfaces of specimens were perpendicular to the hot pressing direction) also decreased with BN content mainly due to the much lower Young's modulus of BN compared to AlN. With the composition of 30 wt% BN at which the AlN-BN ceramics started to show better machinability than a mild steel, the bend strength was 150 to 160 MPa, which is greater than that of machinable glass-ceramics of a mica system. With tensile surfaces parallel to the hot pressing direction, however, the bend strength obtained for the samples processed with the sintering acids showed low values (about 40 MPa), since most BN particles had such orientation that their cleavage planes (i.e., basal planes) were perpendicular to the pressing direction.

  • PDF

Evaluation of Residual Strength in Damaged Brittle Materials (취성재료의 손상후 잔류강도 평가)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

Web bend-buckling strength of plate girders with two longitudinal web stiffeners

  • Kim, Byung Jun;Park, Yong Myung;Kim, Kyungsik;Choi, Byung H.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.383-397
    • /
    • 2019
  • More than one longitudinal web stiffener may be economical in the design of plate girders that have considerably high width-to-thickness ratio of webs. In this study, the bend-buckling strength of relatively deep webs with two horizontal lines of flat plate-shaped single-sided stiffeners was numerically investigated. Linear eigenvalue buckling analyses were conducted for specially selected hypothetical models of stiffened web panels, in which top and bottom junctions of a web with flanges were assumed to have simply supported boundary conditions. Major parameters in the analyses were the locations of two longitudinal stiffeners, stress ratios in the web, slenderness ratios and aspect ratios of web panels. Based on the application of assumptions on the combined locations of the two longitudinal web stiffeners, simplified equations were proposed for the bend-buckling coefficients and compared to the case of one longitudinal stiffener. It was found that bend-buckling coefficients can be doubled by adopting two longitudinal stiffeners instead of one longitudinal stiffener. For practical design purposes, additional equations were proposed for the required bending rigidity of the longitudinal stiffeners arranged in two horizontal lines on a web.

Comparative Studies of Muscle Activity on Upper Extremity Between Push-up bend and Push-up plus Movement According to change of supporting base interval (지지면 간격변화에 따른 푸시업(Push-up) 굽힘동작과 푸시업 플러스(Push-up plus) 동작시 상지 근육의활성도 비교)

  • Kim, Eun-Young;Park, Hung-Gi;Ahn, Byung-Heon
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.3
    • /
    • pp.31-41
    • /
    • 2008
  • Purpose : The purpose of this study is to examine the muscle activity of shoulder stabilization according to change of supporting base interval between push-up bend and push-up plus position and is to prevent or treat a shoulder injury by the most effective exercise for rehabilitation. Methods : This study analyzed the muscle activity according to change of supporting base interval between push-up bend and push-up plus movement. The participants without neuromuscular disease were 25 students - 12 males and 13 females - all twenty or over and the surface electrode of EMG attached on pectoralis major, triceps long head, middle trapezius, lower trapezius, serratus anterior and latissimus dorsi. The process has practiced 3 sessions of supporting base interval - narrowing interval, two shoulder interval, broad interval - by push-up bend and push-up plus movement. Result : 1. The muscle activity of pectoralis major was significantly increased according to narrow interval of supporting base on push-up plus movement and was significant difference(p<.05). 2. The muscle activity of biceps was significantly increased according to narrow interval of supporting base on push-up bend movement(p<.05). 3. The muscle activity of middle or lower trapezius was a difference according to change of supporting base on push-up bend and push-up plus movement but was not significant difference. 4. The muscle activity of serratus anterior was significantly increased according to broad interval of supporting base on push-up bend movement(p<.05). 5. The muscle activity of latissimus dorsi was significantly increased according to broad interval of supporting base on push-up bend movement(p<.05). Conclusion : These results lead us to the conclusion that push-up bend exercise have the effect of muscle strength of biceps on narrowing interval, of serratus anterior or latissimus dorsi on broad interval and push-up plus exercise have the effect of muscle strength of pectoralis major on narrowing interval of support base.

  • PDF

Elastic Bend Buckling of I-Girders Considering Interactive Effects of Flanges and Webs (플랜지-복부판의 상호작용을 고려한 I형 거더의 탄성휨좌굴)

  • 강영종;최진유;최영준;최승겸
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.254-261
    • /
    • 1997
  • In desingin plate bridges, the width-thickness ratio of flanges and webs are proportioned in such that the premature local buckling of flanges and webs prior to achievement of the full strength of plate-girders must be prevented. It is the common practive in most design codes that the flange local buckling strength and the web bend buckling strength are separately computed. In most practical plate girders, however, the flange buckles simultaneously when web bend-buckling occurs, vice versa. The primary purpose of the present study is to investigate the phenomenon, which may be called flange-web interactive buckling. Using the eight-node shell element available in the commercial multi-purpose program ABAQUS, the phenomenon was quantitatively investigated. Also presented are the effects of various factors such as the ratio of flange slenderness ratio to the web slenderness ratio, the ratio of flange width to the web depth, and the longitudinal stiffeners. A series of comparative studies with various design codes show that the present study provides more accurate and effective design basis in proportioning the flanges and webs.

  • PDF

Fracture Properties of Nuclear Graphite Grade IG-110 (원자로용급 흑연인 IG-110의 파괴특성)

  • Han, Dong-Yun;Kim, Eung-Sun;Chi, Se-Hwan;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.439-444
    • /
    • 2006
  • Artificial graphite generally manufactured by carbonization sintering of shape-body of kneaded mixture using granular cokes as filler and pitch as binder, going through pitch impregnation process if necessary and finally applying graphitization heat treatment. Graphite materials are used for core internal structural components of the High-Temperature Gas-cooled Reactors (HTGR) because of their excellent heat resistibility and resistance of crack progress. The HTGR has a core consisting of an array of stacked graphite fuel blocks are machined from IG-110, a high-strength, fine-grained isotropic graphite. In this study, crack stabilization and micro-structures were measured by bend strength and fracture toughness of isotropic graphite grade IG-110. It is important to the reactor designer as they may govern the life of the graphite components and hence the life of the reactor. It was resulted crack propagation, bend strength, compressive strength and micro-structures of IG-110 graphite by scanning electron microscope and universal test machine.

Bend Resistance of Polymer Cement Slurry Coated Reinforcing bars (폴리머 시멘트 슬러리 도장철근의 내굴곡성)

  • 김현기;김민호;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1017-1022
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by adhesion strength of bar and coating materials and transformation of coating materials to the bar. Expecially, tearing state or a limited microscopic cracks are predicted on the inside and outside of bending angle because of adhesion strength and elongation is very different with types of polymer materials using bar coating, and these parts are accelerated corrosion as penetration of bar corrosion effects factor. In this study, cement modified polymer are prepared four types and differ from polymer cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 280days, and then tested bend resistance as bending angle $90^{\circ}$, $135^{\circ}$ and $180^{\circ}$ for observe the microscopic demage effect according as bar bend. From the test results, when is used cement modified polymer as coating materials of bar, St/BA is showed excellent bend resistance than a polyacrylic emulsion and SBR because of softness. But it is to need attention because as coating parts are pressed down and tearing, also experimental study is proceeded to corrosion potential on the inside and outside of coated reinforcing bar.

  • PDF