• Title/Summary/Keyword: bend

Search Result 857, Processing Time 0.027 seconds

Vertical Alignment of Liquid Crystal by Ion Beam Irradiation (이온빔 배향에 의한 수직 배향막의 액정 배향)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Young-Hwan;Ok, Chul-Ho;Han, Jeong-Min;Kim, Jong-Hwan;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.414-414
    • /
    • 2007
  • In this study, Liquid Crystal (LC) alignment and tilt angle generation in Nematic Liquid Crystal (NLC) with negative dielectric anisotropy on the homeotropic PI surface with new ion beam exposure are reported. Also. high density of ion beam energy (DuoPIGatron type Ar ion gun) is used in this study. The tilt angle of NLC on the homeotropic Polyimide (PI) surface for all incident angles is measured about 38 degree and this has a stabilization trend. And the good LC alignment of NLC on the PI surface with ion beam exposure of $45^{\circ}$ incident angle was observed. Also the tilt angle of NLC on the homeotropic PI surface with ion beam exposure of $45^{\circ}$ had a tendency to decrease as ion beam energy density increase. The tilt angle could be controlled from verticality to horizontality. Also, the LC aligning capabilities of NLC on the homeotropic PI surface according to ion beam energy has the goodness in case of more than 1500 eV. Finally. the superior LC alignment thermal stability on the homeotropic PI surface with ion beam exposure can be achieved. For OCB(Optically Compensated Bend) mode driving, we can need pretilt angles control for fast response time. In this study, We success pretilt angles control. Consequently, this result can be applied for OCB mode.

  • PDF

Driving Per Nozzle By Various Waveform Depending On Resonance Frequency In Piezoelectric Inkjet Head (잉크젯 헤드의 공진주파수에 따른 구동파형을 이용한 개별노즐 제어)

  • Kim, Y.J.;Park, C.S.;Sim, W.C.;Kang, P.J.;Yoo, Y.S.;Park, J.H.;Joung, J.W.;Oh, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1542-1543
    • /
    • 2007
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristics were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Using the water based ink of viscosity of 11.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets through 64 nozzles average velocity of 4.05 m/s with standard deviation of 0.06 m/s and average diameter of $29.2\;{\mu}m$ with standard variation of $0.5\;{\mu}m$.

  • PDF

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

Effects of High Voltage Pulsed Galvanic Stimulation on Skeletal Muscle in Rats (고압맥동전류 자극이 흰쥐의 탈신경근 섬유 형태에 미치는 영향)

  • Park Hwan-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.145-152
    • /
    • 2002
  • This study was carried out of to determine effects of high voltage pulsed galvanic stimulation on the soleus. target muscle of the sciatic nerve, of white rat two condition. The coditions included normal, and denervated muscle. The histochemical, ultrastructural observations were made. The following results were obtains. 1. The histochemical observations found the inflammatory cells between muscle bundle and muscle fiber since 1-week control group. In addition, nucleus located in the muscle fiber was frequently observed. 2. The experimental group showed a similar phenomenom to the normal muscles in terms of glycogen granules in the 1-week group, where as fiber were not distinguishable in4-weeks group which indicated that the degenerative changes had occured. 3. The NADH-TR reaction showed that the red muscle slightly increased in the 2-weeks group, and the distinguished was impossible the red fiber 4. The ultrastructures of the muscles in both groups were severely bend, and a number of vacuoles were observed due to the destruction of mitochondria..

  • PDF

Experimental Study for Protection of Local Scouring around Bridge Pier in a Curved Channel (만곡부에 위치한 교각주위의 국부세굴 보호공에 관한 실험적 연구)

  • Choe, In-Ho;Park, Yeong-Jin;Song, Jae-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.269-277
    • /
    • 1998
  • Laboratory flume experiments to investigate the characteristics of the flows and local scour around circular bridge pier in a curved channel are performed. In this study, the effect of a circular collar device for controlling the depth of scour is examined. The scour depth with a collar is about 40% of the scour depth without collar in the straight course of the flume while it is about 44% of the scour depth without collar at the location of 150' in the curved channel. As the results of experiments using the collar of which diameter is twice of pier, the reduction of scour depth is the most effective in a straight channel when the location of collar is 0.2h( h:depth) below the channel bottom. And, the reduction of scour depth is the most effective in a curved channel when the location of collar is 0.1h below the channel bottom.

  • PDF

Fabrication of Y-TZP/Ce-TZP Multilayer Composites Using Slip Casting(II) (슬립주입에 의한 Y - TZP/Ce-TZP 다층 복합체의 제조(II))

  • Kim, Min-Ju;Lee, Yun-Bok;Kim, Yeong-U;Jeon, Byeong-Se;Park, Hong-Chae
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.677-683
    • /
    • 2000
  • Three- and five-layer 3Y-YZP/12Ce- TZP composites prepared by a slip casting method have been char­acterized in terms of mechanical properties. The fracture strength of mutilayer c$\alpha$nposites determined in a diametral compression test was 327~534 MPa. Although the indentation strength of the materials was generally reduced with i increasing Vickers indentation load up to 300 N, the damage resistance of multilayer composites was superior com­pared to monolithic layer TZP material. The four-point bend strength of the layered material remained at the values of 620~674 MPa after indentation with a load of 49 N, while that of the monolithic TZP material was 129~339 MPa. The microindentation toughness of the multilayer material was $7.7~13.1\;MPa{\cdot}m^{1/2}$.

  • PDF

Kinematic Analysis of Levering Systems in Compound Bows (컴파운더 보우 지레 시스템의 기구학적 해석)

  • Lee, Yong-Sung;Kim, Hong Seok;Cheong, Seong-Kyun;Choi, Ung-Jae;Kim, Young-Keun;Park, Kyung-Rea;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • Compound bows use levering systems consisting of cables and cam pulleys to bend limbs that are much stiffer than those of recurve bows, thus storing more energy while requiring less force for the archer to hold the bow at a fully drawn position. Many patents have thus far been proposed to improve the efficiency and performance of compound bows through empirical methods, whereas only a few analytical methods have been proposed. In this light, this paper presents a method for the kinematic analysis of levering systems in compound bows so that a designer can easily predict the effects of changes in the cam profiles and limb materials.

Design and Performance Analysis of ML Techniques for Finger Motion Recognition (손가락 움직임 인식을 위한 웨어러블 디바이스 설계 및 ML 기법별 성능 분석)

  • Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • Recognizing finger movements have been used as a intuitive way of human-computer interaction. In this study, we implement an wearable device for finger motion recognition and evaluate the accuracy of several ML (Machine learning) techniques. Not only HMM (Hidden markov model) and DTW (Dynamic time warping) techniques that have been traditionally used as time series data analysis, but also NN (Neural network) technique are applied to compare and analyze the accuracy of each technique. In order to minimize the computational requirement, we also apply the pre-processing to each ML techniques. Our extensive evaluations demonstrate that the NN-based gesture recognition system achieves 99.1% recognition accuracy while the HMM and DTW achieve 96.6% and 95.9% recognition accuracy, respectively.

Design of n Miniaturized LTCC Power Detector for the Tx Power Control in Wireless Communication System (무선통신시스템 송신측 제어를 위한 초소형 LTCC 전력검출부의 설계)

  • Hwang, Mun-Su;Lim, Jong-Sik;Yang, Gyu-Ryeol;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.621-627
    • /
    • 2008
  • This paper presents a compact and miniaturized power detector utilizing low temperature co-fired ceramics(LTCC) technology for the application in wireless handset system to monitor the transmitting power at the frequency of 824-849MHz. The proposed power detector is composed of detector diode, lumped components for matching network, and LTCC stripline coupler based on LTCC substrate technology. A 20dB LTCC stripline direction coupler is designed and implemented with many bending section in order to reduce the practically occupied area for miniaturization. A zero bias schottky diode is adopted for detector design because of its high speed operation with minimized loss. The measured performances of fabricated detector agree well with the predicted results with a good linearity within the effective input RF power range.

Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation

  • Kwak, Sang-Won;Ha, Jung-Hong;Lee, WooCheol;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.270-275
    • /
    • 2014
  • Objectives: This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations. Materials and Methods: The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (n = 10), the files were loaded in the axial direction of the shaft, and the maximum load was measured during the files' deflection. The files (n = 10) were fixed at 3 mm from the tip and then bent $45^{\circ}$ with respect to their long axis, while the bending force was recorded by a load cell. For measuring the torsional properties, the files (n = 10) were also fixed at 3 mm, and clockwise rotations (2 rpm) were applied to the files in a straight state. The torsional load and the distortion angle were recorded until the files succumbed to the torque. Results: The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (p < 0.05). Conclusions: The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.