• Title/Summary/Keyword: benchmark

Search Result 2,321, Processing Time 0.025 seconds

Philosophical Views on Science of Major Science Curriculum Documents in USA

  • Jang, Myoung-Duk
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.4
    • /
    • pp.401-418
    • /
    • 2003
  • The purpose of this study was to examine philosophical views on science of two influential curriculum documents, AAAS' s Benchmarks for Scientific Literacy (Benchmark) and NRC's National Science Education Standards (Standard), and to get educational implications about a desired philosophical view on science at a school science level. In order to determine the philosophical views on science explicitly suggested in the documents, Soh's Philosophical Perspectives Probe (PPP) was used as a framework for analysis. Forty preservice teachers reviewed the documents, extracting paragraphs with which statements of the PPP' s questions would agree. The results of the study were as follows: First, the Benchmark's philosophical view on science corresponds to the borderline between inductivism and eclecticism, or eclecticism close to falsificationism. The philosophical positions by the PPP' s themes are very different. Second, the Standard's philosophical position on science corresponds to inductivism close to eclecticism. Its philosophical position by the themes of the PPP is very different like the Benchmark. These results indicate that philosophical positions of the documents are more complex than popular conceptions would have it. That is to say, the results suggest that the science curriculum documents hold not only a contemporary philosophical view on science but also a traditional view on science, and that the philosophical positions on science are different from each other by documents and even by the PPP's themes in the same document. The results suggest that the philosophical views on science in school science contexts need to be adjusted and presented to K-12 students according to topics related to philosophy of science.

Experimental Performance Comparison of Dynamic Data Race Detection Techniques

  • Yu, Misun;Park, Seung-Min;Chun, Ingeol;Bae, Doo-Hwan
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.124-134
    • /
    • 2017
  • Data races are one of the most difficult types of bugs in concurrent multithreaded systems. It requires significant time and cost to accurately detect bugs in complex large-scale programs. Although many race detection techniques have been proposed by various researchers, none of them are effective in all aspects. In this paper, we compare the performance of five recent dynamic race detection techniques: FastTrack, Acculock, Multilock-HB, SimpleLock+, and causally precedes (CP) detection. We experimentally demonstrate the strengths and weaknesses of these dynamic race detection techniques in terms of their detection capability, running time, and runtime overhead using 20 benchmark programs with different characteristics. The comparison results show that the detection capability of CP detection does not differ from that of FastTrack, and that SimpleLock+ generates the lowest overhead among the hybrid detection techniques (Acculock, SimpleLock+, and Multilock-HB) for all benchmark programs. SimpleLock+ is 1.2 times slower than FastTrack on average, but misses one true data race reported from Mutilock-HB on the large-scale benchmark programs.

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

A Three-Dimensional Nodal Diffusion Code Based on the AFEN Methodology (해석함수전개 노달방법에 기초한 3차원 노달확산 코드)

  • Hong, Ser-Gi;Cho, Nam-Zin;Noh, Jae-Man
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.870-876
    • /
    • 1995
  • In this paper, a new three-dimensional nodal diffusion code which is based on the AFEN methodology is described and tested. The method expands the homogeneous flux within a node in ter-ms of eighteen analytic basis functions satisfying the diffusion equation at any point of the node. And the nodal coupling equations are derived such that nodal balance, current continuity and leakage balance within an infinitesimally small box around the edge are satisfied. To verify its accuracy, the code was applied to the well-known static LMW benchmark problem and a small core benchmark problem that has the same material properties as the three-dimensional IAEA benchmark problem and compared with two other codes (QUANDRY, VENTURE). The results show that the code provides good accuracy both in the power distribution and in the effective multiplication factor.

  • PDF

Development of Benchmark Index of LoS for Asset Management of Water Treatment Facilities (정수시설 자산관리 LoS분석 벤치마크지수 개발)

  • Nam, Youngwook;Hyun, Inhwan;Lee, Chulsung;Chun, Mingyu;Kim, Mincheol;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.667-683
    • /
    • 2015
  • Since aged water treatment facilities could threaten the sustainable water supply, asset management system has been adopted for their systematic management. Level of Service(LoS) is one of critical components of asset management and could be quantified through benchmark index(BMI). Water supplier could estimate consumer's satisfaction and their performance through BMI to improve the LoS. We developed BMI for water treatment facilities from customer's satisfaction survey. BMI, represented with the Total Service Score(TSS), was assessed with water quality, water pressure, taste and odor, water rate, and service quality with weighing factors. BMI could, further, be used to assist the analysis of the life cycle cost to increase the unit of LoS.

Response spectrum analysis considering non-classical damping in the base-isolated benchmark building

  • Chen, Huating;Tan, Ping;Ma, Haitao;Zhou, Fulin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.473-485
    • /
    • 2017
  • An isolated building, composed of superstructure and isolation system which have very different damping properties, is typically non-classical damping system. This results in inapplicability of traditional response spectrum method for isolated buildings. A multidimensional response spectrum method based on complex mode superposition is herein introduced, which properly takes into account the non-classical damping feature in the structure and a new method is developed to estimate velocity spectra from the commonly used displacement or pseudo-acceleration spectra based on random vibration theory. The error of forced decoupling method, an approximated approach, is discussed in the viewpoint of energy transfer. From the base-isolated benchmark model, as a numerical example, application of the procedure is illustrated companying with comparison study of time-history method, forced decoupling method and the proposed method. The results show that the proposed method is valid, while forced decoupling approach can't reflect the characteristics of isolated buildings and may lead to insecurity of structures.

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.

Mathematical Adjoint Solution to Analytic Function Expansion Nodal (AFEN) Method (해석함수전개 노달방법의 수학적 수반해)

  • Cho, Nam-Zin;Hong, Ser-Gi
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.374-384
    • /
    • 1995
  • The mathematical adjoint solution of the Analytic Function Expansion (AFEN) method is found by solving the transposed matrix equation of AFEN nodal equation with only minor modification to the forward solution code AFEN. The perturbation calculations are then performed to estimate the change of reactivity by using the mathematical adjoint The adjoint calculational scheme in this study does not require the knowledge of the physical adjoint or the eigenvalue of the forward equation. Using the adjoint solutions, the exact and first-order perturbation calculations are peformed for the well-known benchmark problems (i.e., IAEA-2D benchmark problem and EPRI-9R benchmark problem). The results show that the mathematical adjoint flux calculated in the code is the correct adjoint solution of the AFEN method.

  • PDF

MARS/MASTER Solution to OECD Main Steam Line Break Benchmark Exercise III

  • Jeong, Jae-Jun;Joo, Han-Gyu;Chung, Bub-Dong;Ha, Kwi-Seok;Lee, Won-Jae;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.214-226
    • /
    • 2000
  • In an effort to assess the performance of KAERI's coupled 3D kinetics - system T/H code, MARS/MASTER, Exercise III of the OECD main steam line break benchmark is solved. The analysis model of the reference plant, TMI-1 - a 2772 MWth B&W plant, consists of three major components: a core neutronics model involving 241$\times$28 neutronic nodes, a vessel 3D T/H model consisting of 374 hydrodynamic volumes, and a 1D system T/H model containing 157 hydrodynamic volumes. The results show that there is a significant amount of flow mixing occurring in the upper and lower plenum regions and the core power distribution evolves to a highly localized shape due to the presence of a stuck rod, as well as the asymmetric flow distribution. It is judged that MARS/MASTER properly captures these drastic 3-dimensional effects. Comparisons with other results submitted to OECD confirm the accuracy of the MARS/MASTER solution.

  • PDF