• 제목/요약/키워드: belite low heat portland cement

검색결과 12건 처리시간 0.028초

포틀랜드계 시멘트 콘크리트의 촉진 염화물 확산 특성 (Accelerated Chloride Diffusion Properties of Portland Cement Concrete)

  • 김진철;이찬영;이용은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.775-778
    • /
    • 1999
  • Accelerated chloride diffusion tests were carried out to estimate the chloride diffusion coefficient of concrete using ordinary portland cement, low heat belite-rich portland cement, and sulphate resistant portland cement. Concrete using low heat belite-rich portland cement showed a high diffusion coefficient due to delayed hydration of low heat belite rich portland cement, while the diffusion coefficients of concrete using sulphate resistant portland cement and ordinary portland cement were low.

  • PDF

저열 포틀랜드 시멘트 적용을 통한 SRC 교각 온도균열 제어 (Thermal Crack Control of SRC Pier Using Low-Heat Portland Cement)

  • 김태홍;하재담;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.297-302
    • /
    • 2001
  • SRC pier at KTE 6-1 construction area is a very important structure. Precise control of quality is needed. This pier has 3.50m$\times$3.73m section and 38.20m length. So this structure must be treated as mass concrete and thermal crack caused by hydration heat should be controled. In this project belite cement concrete is used to control the thermal crack. As a result of adapting belite cement concrete perfect control is achieved. Finally, hydration heat FEM analysis of horizontal element is executed for Ordinary Portland Cement concrete and belite cement concrete. In comparison of two results, it is confirmed that using low heat portland cement concrete is necessary.

  • PDF

저발열형 시멘트 개발에 관한 연구 (Study on Low Heat Cements)

  • 최재웅;하재담;김동석;김기수;최롱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.46-51
    • /
    • 1999
  • Mass concrete structures have many critical points in service. The cracks caused by the heat of hydration is the most serious problem, so that many method ot control cracks(precooling, postcooling, etc) have been applied to construction. But cooling methods take high cost and many installation and limits of field. Therefore it is useful to use the low heat hydration cements for low cost. This paper describes the characteristics of a low heat cement mixing the ternary components of cement(portland cement, blast furnace slag, fly ash) recently developed for mass concrete, belite cement, low heat slag cement(belite base) and fly ash cement (belite base). The objective of this paper is to study on low heat cement about initial compressive strength and hydration heat.

  • PDF

저열 포틀랜드(벨라이트)시멘트 콘크리트의 특성 (Properties of Low Heat Portland(Belite Rich) Cement Concrete)

  • 하재담;김기수;김동석;구본창;조계홍;이동윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.66-71
    • /
    • 1998
  • Recently, it has been increased to construct massive concrete structures, like under-ground structure, offshore structure etc., ie. concrete construction have become larger and higher and are demanding lower heat concrete to prevent thermal cracking. It has been progressed to replace cements with fly-ash and slag to lower heat of hydration, but it is hard to control quality of the mineral admixtures in stage of adjusting of real construction. Application of low heat portland(Belite Rich) cement for the mass concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of using low heat portland cement(LHPC). Also, we compare the results of adiabatic temperature rise test using LHPC and OPC.

  • PDF

저열 포틀랜드(4종)시멘트 모르터의 마이크로파를 이용한 조기강도 추정에 관한 실험적 연구 (Experimental Estimation of the Early Strength of Belite Cement Mortar Using Microwave)

  • 김민석;박재한;정근호;이종균;이영도;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1077-1082
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Belite cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility of site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

마이크로파 가열기법에 의한 저열 포틀랜드시멘트 콘크리트의 조기강도 추정에 관한 실험적 연구 (An Experimental Study on the Early Strength Estimation of Belite Cement Concrete by Microwave Method)

  • 이민경;황병준;전판근;박병근;김성식;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.1041-1046
    • /
    • 2003
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture (fly ash, silica fume). So, Belite cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility of site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required.

  • PDF

Hydration Characteristics and Synthesis of Hauyne-Belite Cement as Low Temperature Sintering Cementitious Materials

  • Park, Sang-Jin;Jeon, Se-Hoon;Kim, Kyung-Nam;Song, Myong-Shin
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.224-229
    • /
    • 2018
  • OPC production requires high calorific value and emits a large amount of $CO_2$ through decarbonation of limestone, accounting for about 7% of $CO_2$ emissions. To reduce $CO_2$ emissions during the Ordinary Portland Cement (OPC) production process, there is a method of reducing the consumption of cement or lower temperature calcination for OPC product. In this study, for energy consumption reduction, we prepared Hauyne-belite cement by calcination at a low temperature compared to that used for OPC and studied the early hydration properties of the synthesized Hauyne-belite cement. We set the ratios of Hauyne and belite to 8 : 2, 5 : 5 and 3 : 7. For the hydration properties of the synthesized Hauyne-belite cement, we tested heat of hydration of paste and the compressive strength of mortar, using XRD and SEM for analysis of hydrates. As for our results, the temperature for optimum synthesis of Hauyne-belite is $1,250^{\circ}C$. Compressive strength of synthesized Hauyne-belite cement is lower than that of OPC, but it is confirmed that compressive strength of synthesized Hauyne-belite cement with mixing in of some other materials can be similar to that of OPC.

마이크로파를 이용한 저열 포틀랜드(4종)시멘트 모르터의 조기강도 추정에 관한 실험적 연구 (An Experimental Study on the Strength Estimation of Belite Cement Mortar by Microwave Heating)

  • 김민석;정근호;이영도;정재영;정상진
    • 한국건축시공학회지
    • /
    • 제1권2호
    • /
    • pp.179-184
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Beilte cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility if site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

동결융해 및 중성화를 받은 콘크리트의 철근 부식 특성 (Corrosion of Steel in Concrete Deteriorated by Freezing/Thawing and Carbonation)

  • 정해문;김종우;이대근;최광일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.293-298
    • /
    • 1997
  • Corrosion of steel reinforcing in concrete deteriorated by freezing/thawing and carbonation was characterized. Concrete specimens were prepared using various kinds of cements such as ordinary portland cement (type I), low heat portland cement (type IV, belite rich cement), sulphate resistance portland cement (type V), blast furnace slag portland cement and ternary blended cement. Of various cements, type V and type IV with lower $C_3A$ content revealed better steel corrosion resistance after freezing/thawing and carbonation. $C_3A$ content in cement might affect freezing/thawing resistance in sea water.

  • PDF

물-시멘트비 및 시멘트 종류가 해양콘크리트의 내염해성에 미치는 영향 (Effect of W/C and the Kinds of Cement on the Chloride Invasion Resistance of the Offshore Concrete)

  • 신홍철;유재강;박상준;김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.165-168
    • /
    • 2005
  • This paper investigated the effect of W/C and the kinds of cement on the chloride invasion resistance of the offshore concrete. W/C set up 0.30, 0.35, 0.40 and The kinds of cement were used four(ordinary portland cement, ground granulated blast-furnace slag cement, belite cement, low heat portland cement). For the electrical migration test, NT BUILD 492's method was used to estimate the migration coefficient of chloride ion. As a result, the migration coefficients of chloride ion of concrete according to w/c were shown reducing with the w/c increasing, and according to kinds of cement were shown discrepancy in chloride invasion resistance. Especially blast-furnace slag cement was most low it. In the each cement, the compressive strength was shown related to the migration coefficient.

  • PDF