• Title/Summary/Keyword: behavior in the transverse direction

Search Result 135, Processing Time 0.021 seconds

Experimental Study of Spatial and Temporal Dynamics in Double Phase Conjugation

  • Kwak, Keum-Cheol;Yu, Yong-Hun;Lim, Tong-Kun;Lee, Dae-Eun;Son, Jung-Young
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.41-46
    • /
    • 1999
  • Spatial and temporal dynamics arising in a photorefractive crystal(BaTiO3) during the process of double phase conjugation was studied experimentally. We studied the dynamical effects caused by the buildup of the diffraction grating and turn on of phase conjugated beams, as well as the spatial effects caused by the finite transverse coupling of beams and the propagation direction of beams. We observed conical emission in DPCM. We believe that various temporal and spatial instabilities are due to movement of the nonlinear grating. For a real beam coupling and constructive interaction of interference fringes in the crystal, we observed steady, periodic, irregular temporal behavior. And, by the calculation of the correlation index, we found that the spatial correlation decreased as the transverse interaction region was increased.

Investigation on the Experimental Results of Anisotropic Fracture Behavior for UHSS 1470 MPa Grade Sheets (초고강도 1470 MPa급 판재의 파단 이방성 실험 결과에 관한 연구)

  • J. Lee;H. J. Bong;D. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.87-91
    • /
    • 2023
  • In the present work, the ductile fracture behaviors of ultra-high strength steel sheets along the different loading directions are investigated under various loading paths. Three loading paths, i.e., in-plane shear, uniaxial tension, plane strain tension deformations, are considered, and the corresponding specimens are described. The experiments are conducted using the digital image correlation (DIC) system to analyze the strain at the onset of the fracture. The experimental results show that the loading path for each specimen sample is linear, and different values of the fracture strains for the loading direction from the plane strain tension are observed. The ductile fracture model of the modified Mohr-Coulomb (MMC) is constructed based on the experimental data and evaluated along the rolling direction and transverse direction under various loading paths.

Dynamic tensile characteristics of SUS304L steel sheets (SUS304계열 강판의 동적인장특성)

  • Kim, J.S.;Huh, H.;Lee, J.W.;Kwon, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.360-363
    • /
    • 2007
  • This paper deals with the dynamic tensile characteristics of the steel sheets for structural members of a train. Train accidents occurs rarely but lead to many casualties and economical loss. Therefore the safety of the train becomes important during the train crash. The dynamic tensile characteristics of the steel sheets are indispensable to analyze the structural crashworthiness. Current research reports the stress-strain curves, fracture elongation and strain rate sensitivities evaluated at the various strain rates especially for SUS304L-ST and SUS304L-LT steel sheets. The results include the difference in the dynamic tensile characteristics of both rolling and transverse directions. Dynamic tensile tests were performed at the strain rates ranging from 0.003/sec to 200/sec using High Speed Material Testing Machine. The materials tested in this research shows interesting behavior at the low strain rates. The strain hardening exponent decreases remarkably while the yield strength increases.

  • PDF

Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure (박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.269-283
    • /
    • 2016
  • A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick function ally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I) (횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I))

  • Kang Ji-Woong;Kim Sang-Tae;Kwon Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Vibrations and stress analysis of perforated functionally graded rotating beams

  • Alaa A. Abdelrahman;Hanaa E. Abd-El-Mottaleb;Mohamed G. Elblassy;Eman A. Elshamy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.667-684
    • /
    • 2023
  • In the context of finite element method, a computational simulation is presented to study and analyze the dynamic behavior of regularly perforated functionally graded rotating beam for the first time. To investigate the effect of perforation configurations, both regular circular and squared perforation patterns are studied. To explore impacts of graded material distributions, both axial and transverse gradation profiles are considered. The material characteristics of graded materials are assumed to be smoothly and continuously varied through the axial or the thickness direction according the nonlinear power gradation law. A computational finite elements procedure is presented. The accuracy of the numerical procedure is verified and compared. Resonant frequencies, axial displacements as well as internal stress distributions throughout the perforated graded rotating cantilever beam are studied. Effects of material distributions, perforation patterns, as well as the rotating beam speed are investigated. Obtained results proved that the graded material distribution has remarkable effects on the dynamic performance. Additionally, circular perforation pattern produces more softening effect compared with squared perforation configuration thus larger values of axial displacements and maximum principal stresses are detected. Moreover, squared perforation provides smaller values of nondimensional frequency parameters at most of vibration modes compared with circular pattern.

Analysis of the Homogenization of the Elastic Behavior for a Sheet with Sheared Protrusions using Hexahedral Mesh Coarsening (육면체 요소 재구성을 통한 개방형 사다리꼴이 성형된 판재의 탄성 거동 균질화에 대한 연구)

  • Lee, C.W.;Yang, D.Y.;Park, J.S.;Kang, D.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • The current collector for the molten carbonate fuel cell (MCFC) which has sheared protrusions is manufactured by the three-stage forming process that integrates slitting, preforming and final forming. Due to the repetition of sheared protrusions, an effective simulation method is required to predict the mechanical behavior. In the current study, a sheet with sheared protrusions was assumed to be an orthotropic plate, which has the same length, width and height. FEM simulations were conducted to evaluate the homogenized properties of the current collector, which has 4 (longitudinal direction) x 4 (transverse direction) sheared protrusions. The simulation model was constructed using hexahedral mesh coarsening. From the verification examples, it was found that the proposed simulation method was efficient within reasonable accuracy. The calculated homogenized properties can be applied to the design of a stack for molten carbonate fuel cells and the prediction of mechanical behavior for other applications.