• Title/Summary/Keyword: behavior in the transverse direction

Search Result 135, Processing Time 0.025 seconds

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

Fatigue Behavior of GFRP Bridge Deck in the Transverse Direction (GFRP 바닥판의 약축방향 피로거동 특성)

  • Zi, Goang-Sseup;Jung, Jin-Kyu;Kim, Byung-Min;Hwang, Yoon-Koog;Lee, Young-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.393-398
    • /
    • 2007
  • Fatigue Behavior of a GFRP bridge deck consisting of rectangular unit modules is studied by an experimental method. The experiment focuses on how the damage in the transverse direction influence the overall behavior of the deck It is proposed filling the space in each module with a soft foam. Using the recent experimental data, the fatigue behavior is discussed. If the space of the deck is filled with the foam, the fatigue life of the deck was increased about 1,000 times for the same level of the stress variation as the reference deck not filled.

  • PDF

An Experimental Study on the Behavior of Reinforced Concrete Multi-Column Piers with Different Longitudinal and Transverse Reinforcement Details (주철근 겹침이음 및 횡철근 상세에 따른 철근콘크리트 다주교각의 거동특성에 관한 실험적 연구)

  • 김재관;김익현;김정한;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.211-219
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that the ductility of the model in transverse direction is rather higher than in longitudinal direction because of formation of several plastic hinges and that the ultimate displacement and the energy absorbtion capacity are enhanced by using continuous longitudinal bars instead of lap-splice ones. And it is confirmed that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier.

  • PDF

A Study on the Free Vibration Responses of Various Buried Pipelines (각종 매설관의 자유진동거동에 관한 연구)

  • Jeong, Jin-Ho;Park, Byung-Ho;Kim, Sung-Ban;Kim, Chun-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1340-1347
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a free vibration analysis. End boundary conditions considered herein consist of free ends, fixed ends, and fixed-free ends in the axial and the transverse direction. Guided ends, simply supported ends, and supported-guided ends were added to the transverse direction. The buried pipeline was regarded as a beam on an elastic foundation and the ground displacement of sinusoidal wave was applied to it. Natural frequencies and mode shapes were determined according to end boundary conditions. In addition, the effects of parameters on the natural frequency were evaluated. The natural frequency is affected most significantly by the soil stiffness and the length of the buried pipelines. The natural frequency increases as the soil stiffness increases while it decreases as the length of the buried pipeline increases. Such behavior appears to be dominant in the axial direction rather than in the transverse direction of the buried pipelines.

  • PDF

Response modification factors of concrete bridges with different bearing conditions

  • Zahrai, Seyed Mehdi;Khorraminejad, Amir;Sedaghati, Parshan
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • One of the shortcomings of seismic bridge design codes is the lack of clarity in defining the role of different seismic isolation systems with linear or nonlinear behavior in terms of R-factor. For example, based on AASHTO guide specifications for seismic isolation design, R-factor for all substructure elements of isolated bridges should be half of those expressed in the AASHTO standard specifications for highway bridges (i.e., R=3 for single columns and R=5 for multiple column bent) but not less than 1.50. However, no distinction is made between two commonly used types of seismic isolation devices, i.e., elastomeric rubber bearing (ERB) with linear behavior, and lead rubber bearing (LRB) with nonlinear behavior. In this paper, five existing bridges located in Iran with two types of deck-pier connection including ERB and LRB isolators, and two bridge models with monolithic deck-pier connection are developed and their R-factor values are assessed based on the Uang's method. The average R-factors for the bridges with ERB isolators are calculated as 3.89 and 4.91 in the longitudinal and transverse directions, respectively, which are not in consonance with the AASHTO guide specifications for seismic isolation design (i.e., R=3/2=1.5 for the longitudinal direction and R=5/2=2.5 for the transverse direction). This is a clear indicator that the code-prescribed R-factors are conservative for typical bridges with ERB isolators. Also for the bridges with LRB isolators, the average computed R-factors equal 1.652 and 2.232 in the longitudinal and transverse directions, respectively, which are in a good agreement with the code-specified R-factor values. Moreover, in the bridges with monolithic deck-pier connection, the average R-factor in the longitudinal direction is obtained as 2.92 which is close to the specified R-factor in the bridge design codes (i.e., 3), and in the transverse direction is obtained as 2.41 which is about half of the corresponding R-factor value in the specifications (i.e., 5).

High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi;Arao, Yoshihiko;Karasawa, Hirokazu;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.151-166
    • /
    • 2007
  • High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I) (단부 경계조건을 고려한 매설관의 동적응답 해석 (I))

  • Jeong, Jin-Ho;Lee, Byong-Gil;Park, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF

Effect of Transverse Electric Fields on Fracture Behavior of Ferroelectric Ceramics (횡전기장이 강유전체 세라믹의 파괴거동에 미치는 영향)

  • Lee Jong Sik;Beom Hyeon Gyu;Jeong Kyoung Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2005
  • Effect of transverse electric fields on fracture behavior in ferroelectric ceramics under purely electrical loading is investigated. It is shown that the shape and size of the domain switching zone depend strongly on the ratio of the transverse electric field to the coercive electric field as well as the direction of the applied electric field. Under small-scale conditions, the crack-tip mode I and II stress intensity factors induced by ferroelectric domain switching are numerically obtained. The crack kinking in ferroelectric ceramics is also discussed.

A Study on the Forced Vibration Responses of Various Buried Pipelines (각종 매설관의 강제진동거동에 관한 연구)

  • Jeong, Jin-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1334-1339
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a forced vibration analysis. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF