• 제목/요약/키워드: behavior algorithm

검색결과 1,492건 처리시간 0.019초

소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크 (Context Sharing Framework Based on Time Dependent Metadata for Social News Service)

  • 가명현;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.39-53
    • /
    • 2013
  • 인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.

웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발 (Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information)

  • 최유지;박도형
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.155-175
    • /
    • 2017
  • 최근 독감 예측이나 당선인 예측, 구매 패턴, 투자 등 다방면에서 웹검색 트래픽 정보. 소셜 네트워크 내용 등 거대한 데이터를 통해 사회적 현상, 소비 패턴을 분석하는 시도가 이전보다 늘어났다. 구글, 네이버, 바이두 등 인터넷 포털 업체들의 웹검색 트래픽 정보 공개 서비스와 함께 웹검색 트래픽 정보를 활용하여 소비자나 사용자와 관련된 연구가 실시되기 시작했다. 웹검색 트래픽 정보를 활용한 사회 현상, 소비 패턴 분석을 연구는 많이 수행되었으나, 그에 비해서 도출된 여행 수요 모델을 토대로 의사결정을 위한 실질적 대책 수립으로 이어지는 연구는 많이 진행되지 않은 실정이다. 관광산업은 상대적으로 많은 고용을 가능하게 하고 외자를 유치하는 등 고부가가치를 창출하여 경제 전체에 선순환 효과를 일으키는 중요한 산업이다. 그 중에서도 국내 입국외래객중 수년간 2위와의 큰 차이로 1위를 차지해왔던 중국 국적의 관광객 '유커' 및 그들이 지출하는 1인당 평균 관광 수지는 한국 경제에 매우 중요한 한 부분이다. 관광 수요의 예측은 효율적인 자원 배분과 합리적인 의사 결정에 있어서 공공부문 및 민간부문 모두 중요하다. 적절한 관광 수요 예측을 통해서 한정된 자원을 더욱 효과적으로 활용하여 더욱 많은 부가가치를 창출하기 위한 것이다. 본 연구는 중국인 인바운드를 예측하는 방법에 있어, 이전보다 더 최신의 트렌드를 즉각적으로 반영하고 개인들의 집합의 관심도가 포함되어 예측 성능이 개선된 방법을 제안한다. 해외여행은 고관여 소비이기 때문에 잠재적 여행객들이 입국하기 전 웹검색을 통해 적극적으로 자신의 여정과 관련된 정보를 취득하기 위한 활동을 한다. 따라서 웹검색 트래픽 수치가 중국인 여행객의 관심정도를 대표할 수 있다고 보았다. 중국인 여행객들이 한국 여행을 준비하는 단계에서 검색할만한 키워드를 선정해 실제 중국인 입국자 수와 상관관계가 있음을 검증하고자 하였다. 중국 웹검색 엔진 시장에서 80%의 점유율을 가지는 중국 최대 웹검색 엔진 '바이두'에서 공개한 웹검색 데이터를 활용하여 그 관심 정도를 대표할 수 있을 것이라 추정했다. 수집에 필요한 키워드의 선정 단계에서는 잠재적 여행객이 여정을 계획하고 구체화하는 단계에서 일반적으로 검색하게 되는 키워드 후보군을 선정하였다. 키워드의 선정에는 중국 국적의 잠재적 여행객 표본과의 인터뷰를 거쳤다. 트래픽 대소 관계 확인 결과에 따라서 최종 선정된 키워드들을 한국여행이라는 주제와 직접적인 연관을 가지는 키워드부터, 간접적인 연관을 가지는 키워드까지 총 세 가지 레벨의 카테고리로 분류하였다. 분류된 카테고리 내의 키워드들은 바이두'가 제공하는 웹검색 트래픽 데이터 제공 서비스 '바이두 인덱스'를 통해 웹검색 트래픽 데이터를 수집했다. 공개된 데이터 페이지 특성을 고려한 웹 크롤러를 직접 설계하여 웹검색 트래픽 데이터를 수집하였고, 분리되어 수집된 변수에는 필요한 변수 변환 과정을 수행했다. 자동화 수집된 웹검색 트래픽 정보들을 투입하여 중국 여행 인바운드에 대한 유의한 영향 관계를 확인하여 중국인 여행객의 한국 인바운드 여행 수요를 예측하는 모형을 개발하고자 하였다. 정책 의사결정 및 관광 경영 의사결정 같은 실무적 활용을 고려하여 각 변수의 영향력을 정량적으로 설명할 수 있고 설득이 명료한 방법인 다중회귀분석방법을 적용해 선형 식을 도출하였다. 수집된 웹검색 트래픽 데이터를 기존 검증된 모형 독립변인들에 추가적으로 투입함으로써 전통적인 독립변인으로만 구성된 연구 모형과 비교하여 가장 뛰어난 성능을 보이는 모형을 확인하였다. 본 연구에서 검증하려는, 웹검색 트래픽으로 대표되는 독립변인을 투입한 최종 도출된 모형을 통해 중국인 관광 수요를 예측할 때 유의한 영향을 끼치는 웹검색 트래픽 변수를 확인할 수 있다. 최적 모형 설명력을 가지는 모형을 기반으로 최종 회귀 식을 만들었고 이를 '유커마이닝' 시스템 내부에 도입하였다. 데이터 분석에서 더 나아가 도출된 모형을 직관적으로 시각화하고, 웹검색 트래픽 정보를 활용하여 도출할 수 있는 인사이트를 함께 보여주는 데이터 분석 기반의 '유커마이닝' 솔루션의 시스템 알고리즘과 UX를 제안하였다. 본 연구가 제안하는 모형과 시스템은 관광수요 예측모형 분야에서 웹검색 트래픽 데이터라는 정보 탐색을 하는 과정에 놓인 개인들의 인터랙티브하고 즉각적인 변수를 활용한 새로운 시도이다. 실무적으로 관련 정책결정자나 관광사, 항공사 등이 활용 가능한 실제적인 가치를 가지고, 정책적으로도 효과적인 관광 정책 수립에 활용될 수 있다.