• 제목/요약/키워드: bee colony algorithm

검색결과 55건 처리시간 0.022초

DEVELOPMENT OF AUTONOMOUS QoS BASED MULTICAST COMMUNICATION SYSTEM IN MANETS

  • Sarangi, Sanjaya Kumar;Panda, Mrutyunjaya
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.342-352
    • /
    • 2021
  • Multicast Routings is a big challenge due to limitations such as node power and bandwidth Mobile Ad-hoc Network (MANET). The path to be chosen from the source to the destination node requires protocols. Multicast protocols support group-oriented operations in a bandwidth-efficient way. While several protocols for multi-cast MANETs have been evolved, security remains a challenging problem. Consequently, MANET is required for high quality of service measures (QoS) such infrastructure and application to be identified. The goal of a MANETs QoS-aware protocol is to discover more optimal pathways between the network source/destination nodes and hence the QoS demands. It works by employing the optimization method to pick the route path with the emphasis on several QoS metrics. In this paper safe routing is guaranteed using the Secured Multicast Routing offered in MANET by utilizing the Ant Colony Optimization (ACO) technique to integrate the QOS-conscious route setup into the route selection. This implies that only the data transmission may select the way to meet the QoS limitations from source to destination. Furthermore, the track reliability is considered when selecting the best path between the source and destination nodes. For the optimization of the best path and its performance, the optimized algorithm called the micro artificial bee colony approach is chosen about the probabilistic ant routing technique.

Structural health monitoring through meta-heuristics - comparative performance study

  • Pholdee, Nantiwat;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제1권4호
    • /
    • pp.315-327
    • /
    • 2016
  • Damage detection and localisation in structures is essential since it can be a means for preventive maintenance of those structures under service conditions. The use of structural modal data for detecting the damage is one of the most efficient methods. This paper presents comparative performance of various state-of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The metaheuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems for structural damage detection. The meta-heuristics are then used to solve the test problems treated as optimisation problems. Comparative performance is carried out where the statistically best algorithms are identified.

Constrained Relay Node Deployment using an improved multi-objective Artificial Bee Colony in Wireless Sensor Networks

  • Yu, Wenjie;Li, Xunbo;Li, Xiang;Zeng, Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.2889-2909
    • /
    • 2017
  • Wireless sensor networks (WSNs) have attracted lots of attention in recent years due to their potential for various applications. In this paper, we seek how to efficiently deploy relay nodes into traditional static WSNs with constrained locations, aiming to satisfy specific requirements of the industry, such as average energy consumption and average network reliability. This constrained relay node deployment problem (CRNDP) is known as NP-hard optimization problem in the literature. We consider addressing this multi-objective (MO) optimization problem with an improved Artificial Bee Colony (ABC) algorithm with a linear local search (MOABCLLS), which is an extension of an improved ABC and applies two strategies of MO optimization. In order to verify the effectiveness of the MOABCLLS, two versions of MO ABC, two additional standard genetic algorithms, NSGA-II and SPEA2, and two different MO trajectory algorithms are included for comparison. We employ these metaheuristics on a test data set obtained from the literature. For an in-depth analysis of the behavior of the MOABCLLS compared to traditional methodologies, a statistical procedure is utilized to analyze the results. After studying the results, it is concluded that constrained relay node deployment using the MOABCLLS outperforms the performance of the other algorithms, based on two MO quality metrics: hypervolume and coverage of two sets.

강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계 (Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases)

  • 최우용;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.586-591
    • /
    • 2014
  • 본 연구에서는 인공 벌 군집(ABC: Artificial Bee Colony) 알고리즘을 이용하여 주어진 레이더 데이터로부터 강수 사례와 비강수 사례를 분류하는 방사형 기저함수 신경회로망(RBFNNs: Radial Basis Function Neural Networks)분류기를 소개한다. 기상청에서 사용하고 있는 기상 레이더 데이터의 특성 분석을 통해 입력 데이터를 구성한다. 방사형 기저함수 신경회로망의 조건부에서는 Fuzzy C-Means 클러스터링 방법을 이용하여 적합도를 계산하고, 결론부에서는 최소자승법(LSE: Least Square Method)을 이용하여 다항식 계수를 추정한다. 추론부에서 최종출력 값은 퍼지 추론 방법을 이용하여 얻어진다. 제안된 분류기의 성능은 기상청에서 사용하는 QC와 CZ 데이터를 고려하여 비교 및 분석되어진다.

라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계 (Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy)

  • 김은후;배종수;오성권
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.

Swarm-based hybridizations of neural network for predicting the concrete strength

  • Ma, Xinyan;Foong, Loke Kok;Morasaei, Armin;Ghabussi, Aria;Lyu, Zongjie
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.241-251
    • /
    • 2020
  • Due to the undeniable importance of approximating the concrete compressive strength (CSC) in civil engineering, this paper focuses on presenting four novel optimizations of multi-layer perceptron (MLP) neural network, namely artificial bee colony (ABC-MLP), grasshopper optimization algorithm (GOA-MLP), shuffled frog leaping algorithm (SFLA-MLP), and salp swarm algorithm (SSA-MLP) for predicting this crucial parameter. The used dataset consists of 103 rows of information concerning seven influential parameters (cement, slag, water, fly ash, superplasticizer, fine aggregate, and coarse aggregate). In this work, the best-fitted complexity of each ensemble is determined by a population-based sensitivity analysis. The GOA distinguished its self by the least complexity (population size = 50) and emerged as the second time-effective optimizer. Referring to the prediction results, all tested algorithms are able to construct reliable networks. However, the SSA (Correlation = 0.9652 and Error = 1.3939) and GOA (Correlation = 0.9629 and Error = 1.3922) performed more accurately than ABC (Correlation = 0.7060 and Error = 4.0161) and SFLA (Correlation = 0.8890 and Error = 2.5480). Therefore, the SSA-MLP and GOA-MLP can be promising alternatives to laboratorial and traditional CSC evaluative methods.

생체모방 알고리즘 기반 통신 네트워크 기술

  • 최현호;이정륜
    • 정보와 통신
    • /
    • 제29권4호
    • /
    • pp.62-71
    • /
    • 2012
  • 수십 억년 동안 진화를 거듭해온 지구상의 생명체들은 외부의 제어 없이 독자적으로 단순한 행동 규칙에 따라 기능을 수행하여 주어진 목적의 최적해를 달성한다. 이러한 다양한 생명체의 행동 원리를 모델링하여 만든 알고리즘을 생체모방 알고리즘(Bio-Inspired Algorithm)이라 한다. 생체모방 알고리즘은 다수의 개체가 존재하며, 주변 환경이 동적으로 변하고, 가용 자원의 제약이 주어지며, 이질적인 특성을 갖는 개체들이 분잔 및 자율적으로 움직이는 환경에서 안정성, 확장성, 적응성과 같은 특징을 보여주는데, 이는 통신 네트워크 환경 및 서비스 요구사항과 유사성을 갖는다. 본 논문에서는 대표적인 생체모방 알고리즘으로 통신 및 네트워킹 기술로 사용되는 Ant Colony 알고리즘, Bee 알고리즘, Firefly 알고리즘, Flocking 알고리즘에 대해 살펴보고, 관련 프로젝트 및 연구 동향을 정리한다. 이를 통해 현재의 생체모방 알고리즘의 한계를 극복하고 미래 통신 및 네트워킹 기술이 나아갈 방향을 제시한다.

A Congestion Management Approach Using Probabilistic Power Flow Considering Direct Electricity Purchase

  • Wang, Xu;Jiang, Chuan-Wen
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.820-831
    • /
    • 2015
  • In a deregulated electricity market, congestion of the transmission lines is a major problem the independent system operator (ISO) would face. Rescheduling of generators is one of the most practiced techniques to alleviate the congestion. However, not all generators in the system operate deterministically and independently, especially wind power generators (WTGs). Therefore, a novel optimal rescheduling model for congestion management that accounts for the uncertain and correlated power sources and loads is proposed. A probabilistic power flow (PPF) model based on 2m+1 point estimate method (PEM) is used to simulate the performance of uncertain and correlated input random variables. In addition, the impact of direct electricity purchase contracts on the congestion management has also been studied. This paper uses artificial bee colony (ABC) algorithm to solve the complex optimization problem. The proposed algorithm is tested on modified IEEE 30-bus system and IEEE 57-bus system to demonstrate the impacts of the uncertainties and correlations of the input random variables and the direct electricity purchase contracts on the congestion management. Both pool and nodal pricing model are also discussed.

Turbomachinery design by a swarm-based optimization method coupled with a CFD solver

  • Ampellio, Enrico;Bertini, Francesco;Ferrero, Andrea;Larocca, Francesco;Vassio, Luca
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.149-170
    • /
    • 2016
  • Multi-Disciplinary Optimization (MDO) is widely used to handle the advanced design in several engineering applications. Such applications are commonly simulation-based, in order to capture the physics of the phenomena under study. This framework demands fast optimization algorithms as well as trustworthy numerical analyses, and a synergic integration between the two is required to obtain an efficient design process. In order to meet these needs, an adaptive Computational Fluid Dynamics (CFD) solver and a fast optimization algorithm have been developed and combined by the authors. The CFD solver is based on a high-order discontinuous Galerkin discretization while the optimization algorithm is a high-performance version of the Artificial Bee Colony method. In this work, they are used to address a typical aero-mechanical problem encountered in turbomachinery design. Interesting achievements in the considered test case are illustrated, highlighting the potential applicability of the proposed approach to other engineering problems.

CA Joint Resource Allocation Algorithm Based on QoE Weight

  • LIU, Jun-Xia;JIA, Zhen-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2233-2252
    • /
    • 2018
  • For the problem of cross-layer joint resource allocation (JRA) in the Long-Term Evolution (LTE)-Advanced standard using carrier aggregation (CA) technology, it is difficult to obtain the optimal resource allocation scheme. This paper proposes a joint resource allocation algorithm based on the weights of user's average quality of experience (JRA-WQOE). In contrast to prevalent algorithms, the proposed method can satisfy the carrier aggregation abilities of different users and consider user fairness. An optimization model is established by considering the user quality of experience (QoE) with the aim of maximizing the total user rate. In this model, user QoE is quantified by the mean opinion score (MOS) model, where the average MOS value of users is defined as the weight factor of the optimization model. The JRA-WQOE algorithm consists of the iteration of two algorithms, a component carrier (CC) and resource block (RB) allocation algorithm called DABC-CCRBA and a subgradient power allocation algorithm called SPA. The former is used to dynamically allocate CC and RB for users with different carrier aggregation capacities, and the latter, which is based on the Lagrangian dual method, is used to optimize the power allocation process. Simulation results showed that the proposed JRA-WQOE algorithm has low computational complexity and fast convergence. Compared with existing algorithms, it affords obvious advantages such as improving the average throughput and fairness to users. With varying numbers of users and signal-to-noise ratios (SNRs), the proposed algorithm achieved higher average QoE values than prevalent algorithms.