• 제목/요약/키워드: bedrock motion

검색결과 48건 처리시간 0.025초

지반구조물 내진설계시 부지특성을 고려한 설계 지반운동연구 (A Study of Site-Specific Design ground Motions in Earthquake-Resistant Design for Geotechnical Structures)

  • 권수영;박인준
    • 한국지진공학회논문집
    • /
    • 제4권2호
    • /
    • pp.37-46
    • /
    • 2000
  • 본 논문에서는 부지특성을 고려한 설계지반운동의 산정방법을 연구하였으며 그 해석결과를 지반 구조물의 내진설계에 적용하는 방법을 제안하였다 지진응답 해석시 사용되는 설계응답스펙트럼과 설계시간 이력등의 입력운동의 통제점 위치가 지반구조물 내진설동 지층내 암반운동 그리고 노두운동을 사용하는 방법으로 나눌 수 있고 이에 따라 작용 설계지진운동이 변화하므로 지반구조물의 경계조건에 적합한 방법을 사용하여야 한다.

  • PDF

국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정 (Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea)

  • 선창국
    • 지질공학
    • /
    • 제24권2호
    • /
    • pp.273-281
    • /
    • 2014
  • 대부분의 내진설계 기준에서 설계지진지반운동은 기반암에서의 기준 스펙트럼과 지반동적 조건 정량화를 위한 부지증폭계수에 의해 정의된다. 특히, 지진공학적 기반암은 지진파가 증폭 없이 감쇠전파되는 기초적 지반구성층이다. 지진공학 관점에서 기반암을 파악하기 위하여, 원위치 탄성파시험으로 획득한 전단파속도($V_S$) 자료를 시추조사 시 구분되는 암반층에 대해 살펴보았다. 국내 연암에서 대부분의 $V_S$ 자료는 강지진 관측소 설치 시 고려되는 공학적 기반암의 최저 $V_S$ 값인 750 m/s에 비해 크게 나타났으나, 풍화암에서는 전체의 60 % 정도가 작게 나타났다. 따라서 국내 풍화암 하부의 연암 및 그 이상 경도의 암반층을 지진공학적 기반암으로 고려해야 한다.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

국내 지반조건이 고려된 지진 방재기술 확립 방안;지반분류 방법 개선 방안을 중심으로 (Development of Earthquake Prevention Technique Considering Geotechnical Site Characteristics of Korea)

  • 김동수;윤종구;김경택;조성하
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.154-162
    • /
    • 2005
  • In this paper, site response analyses were performed based on equivalent linear technique using the shear wave velocity profiles of 162 sites collected around the Korean peninsula. The site characteristics, particularly the shear wave velocities and the depth to the bedrock, are compared to those in the western United States. The results show that the site-response coefficients based on the mean shear velocity of the top 30m ($V_{S30}$) suggested in the current code underestimates the motion in short-period ranges and overestimates the motion in mid-period ranges. Also the current Korean code based on UBC is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. From the results of numerical estimations, new regression curves were derived between site coefficients ($F_a$ and $F_v$) and the fundamental site periods, and site coefficients were grouped based on site periods in the regions of shallow bedrock. The standard deviations of the proposed method was reasonable compared to site classification based on $V_{S30}$. Finally, new site classification system is recommended based on site periods for regions of shallow bedrock depth in Korea.

  • PDF

부지응답해석에 기초한 지하공간 내진설계 개념 (Aseismic design concept for underground space based on site response analysis)

  • 박인준;유지형
    • 한국터널지하공간학회 논문집
    • /
    • 제12권3호
    • /
    • pp.257-264
    • /
    • 2010
  • 본 논문은 부지응답해석 및 실내시험에 기초한 지하공간 내진설계 개념을 제안하는데 목적을 두고 있다. 설계응답 스펙트럼 및 가속도시간이력과 같은 입력운동의 통제점 위치와 기반암 가정물성이 내진설계에 매우 중요한 역할을 하고 있음을 본 연구결과를 통해 알 수 있었다. 그러므로 통제점 위치에 따른 지표면 자유장운동, 기반암운동 또는 암반노두운동 지반운동 변화를 합리적으로 모델링 할 수 있는 적절한 지반응답 모델을 이용하면 지진하중을 받는 지하공간의 합리적인 경계조건을 모사할 수 있고 현실적인 내진설계가 가능하다.

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • 제9권2호
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.

인공 매립 지반에서의 지진파 증폭 특성 (Seismic Motion Amplification Characteristics at Artificial Reclaimed Land)

  • 김용성;문용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1134-1139
    • /
    • 2005
  • Seismic motion amplification owing to the input motion level at bedrock is one of the important topics to understand various geomaterials behavior. The extremely valuable borehole records at Port Island were obtained during the 1995 Hyogoken Nanbu Earthquake and also before and after the main event. In this study, the seismic motion amplification at the soft reclaimed ground was discussed. Comparison of measured records with numerical simulation results were made with focus on seismic motion amplification characteristics at the soft reclaimed ground.

  • PDF

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Development of Site Classification System and Modification of Design Response Spectra Considering Geotechnical Characteristics in Korea

  • 김동수;윤종구
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.65-77
    • /
    • 2007
  • Site response analyses were performed based on equivalent linear technique using shear wave velocity profiles of 162 sites collected around the Korean peninsula. The site characteristics, particularly the shear wave velocities and the depth to the bedrock, are compared to those in the western United States. The results show that the site-response coefficients based on the mean shear velocity of the top 30m ($V_{S30}$) suggested in the current code underestimates the motion in short-period ranges and overestimates the motion in mid-period ranges. The current Korean code based on UBC is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. From the results of numerical estimations, new regression curves were derived between site coefficients ($F_{a}\;and\;F_{v}$) and the fundamental site periods, and site coefficients were grouped based on site periods with reasonable standard deviations compared to site classification based on $V_{S30}$. Finally, new site classification system and modification of design response spectra are recommended considering geotechnical characteristics in Korea.

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.