• 제목/요약/키워드: bearing stress

검색결과 683건 처리시간 0.024초

롤러 프로파일에 따른 항공용 기어박스 원통 롤러 베어링의 응력 및 수명 평가 (Stress & Life Evaluation of Cylindrical Roller Bearing for Aircraft Gearbox according to Roller Profile Shape )

  • 김재현;한현우;임동우;박정호;김수철;박영준
    • 항공우주시스템공학회지
    • /
    • 제16권6호
    • /
    • pp.35-44
    • /
    • 2022
  • 본 연구의 목적은 항공용 기어박스에 사용되는 원통 롤러 베어링의 응력과 수명을 평가하고, 베어링 롤러와 전동륜 사이에 작용하는 접촉 응력을 최소화하는 롤러 프로파일을 선정하는 것이다. 원통 롤러 베어링이 모든 반경 방향 하중을 지지하도록 4점 접촉 볼 베어링의 설치 간극을 결정하였고, 베어링의 수명을 최대화하는 베어링 설치 위치를 결정하였다. 또한, 항공용 기어박스의 작동 조건을 기반으로 결정된 하중 스펙트럼을 이용하여 베어링의 정적 안전 계수와 동적 수명을 각각 ISO 76과 ISO/TS 16281로 예측하였다. 추가로, 롤러 프로파일 형상에 따른 접촉 응력을 해석하여 최적의 롤러 프로파일을 선정하였고, 롤러의 안정성을 평가하였다. 그 결과, 요구되는 안전 계수와 수명을 모두 만족하였으며, Johns Gohar 롤러 프로파일이 최적의 롤러 프로파일임을 확인하였다.

특수 목적 차량의 수상 추진체용 카단 샤프트의 유니버셜 조인트에 대한 응력 및 수명 평가 (Stress and Life Evaluation of Universal Joint of Cardan Shaft for Waterjet System of Special-Purpose Vehicle)

  • 배명호;이태영;조연상
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.34-38
    • /
    • 2020
  • The powertrain of the waterjet system of a special-purpose vehicle makes use of the cardan shaft, which is composed of universal joints and shafts. These universal joints, composed of spiders and needle roller bearings, have to be designed with consideration for the bending and compressive stresses of the spiders and needle roller bearings, and the rating lives of the bearings. The bending and compressive stresses of the spider and bearing of a universal joint have been studied by many researchers. However, to design a universal joint effectively, overall consideration of the different specifications of needle roller bearings is necessary. In this study, the bending stresses of spiders and compressive stresses of needle roller bearings are calculated to design universal joints for powertrain cardan shafts with different roller diameters of bearing. Furthermore, the rating lives of the needle roller bearings are predicted using the calculated basic dynamic load ratings of the bearings. As a result, roller diameters less than 𝜙2.5 mm are found suitable through an analysis of the bending stress of the spider. All compressive stresses between spider and bearing, regardless of roller diameter, satisfy the requirements. Moreover, roller diameters of more than 𝜙2 mm are found suitable for the required rating life.

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

Comparison of Rolling Contact Fatigue Life of Bearing Steel Rollers Lubricated with Traction Oil and Mineral Oil Corresponding to ISO VG32

  • Nakajima, A.;Mawatari, T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.291-292
    • /
    • 2002
  • Using a low viscosity synthetic traction oil and a low viscosity mineral oil with nearly equal viscosity grade of ISO VG 32, the effect of kind of oil on the fatigue life of bearing steel rollers was examined. A pair of rollers finished the contact surfaces to a mirror-like condition were driven under rolling with sliding conditions of s = -3.2% and a maximum Hertzian stress in the range of $P_H=2.8GPa{\sim}4.0GPa$ was applied in point contact condition. As a result of experiments, the fatigue life with a mineral oil was longer than that with a traction oil under higher stress conditions above $P_H=3.4GPa$. Based on the numerical calculation results of the thermal EHL which simulates the present experiment, the authors discuss the reason why such a difference in the fatigue life comes out.

  • PDF

유니버설 조인트 베어링용 Seal의 성능평가를 위한 유한요소해석 (FEM Analysis for Performance Evaluation of Seal in Universal Joint Bearing)

  • 김태완;문석만;구영필;조용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.571-574
    • /
    • 2000
  • Seals in universal joint bearing are a important component reinforcing lubrication performance by holding a lubricant and preventing infiltration of dust, moisture, etc. There is a great difference in seal performance according to seal shape and bonding position. Therefore, in this study, as for the lib type seal and O-ring type seal, FEM analysis are conducted using Mooney-Rivlin Model. The results are indicate that O-ring having higher contact stress and larger contact area than lib type is more profitable.

  • PDF

유동/구조 연성해석기법을 이용한 Foil Bearing의 변형 및 유동 특성 해석 (An Analysis of the Flow Characteristics and Deformation of a Multileaf Foil Bearing by Using the Fluid/structure Interaction Method)

  • 김영규;허남건
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.607-610
    • /
    • 2002
  • As machines become smaller and faster multileaf foil bearings are used to overcome the problems with heat, friction and wear Systems with foil bearings do not need a separate system for lubrication. These bearings are self acting and are therefore green systems. Until now, there have been many studies on the structural and dynamical performances. Therefore the object of the present study is to predict the flow and structural characteristics by using the Fluid/structure interaction method. The increase in RPM led to the increase in pressure, temperature difference, maximum velocity, Mach number, shear stress and torque. In the case of 90,000 RPM effects such as choking led to a non-lineararity in the system. Also the effect of eccentricity ratio was observed and showed that eccentricity increased the maximum pressure and the density difference while decreasing the shear stress and torque.

  • PDF

BEARING소재 경도에 따른 구름접촉피로의 X선적 해석 (Analysis of Rolling Contact Fatigue of Ball Bearing with Various Hardness by X-ray Diffraction)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제17권3호
    • /
    • pp.209-215
    • /
    • 2001
  • In view of the effects of the hardness of material on fatigue, rolling contact fatigue process in hard metals seems to differ from it in soft metals. This paper has been aimed to compare the rolling contact fatigue process according to the hardness of materials. Rolling contact fatigue tests using the ball bearings assembled with the inner race of four different hardness have been carried out. In addition, residual stress and half-value breadth on/below the inner raceway during individual rolling contact fatigue have been measured by X-ray diffraction. The results of this study showed that the change of residual stress and half-value breadth during the rolling contact fatigue on race way in hard metals is the same as in soft metals. However, plastic deformation by rolling contact in hard metals is in microscopic scale but only for soft metals in macroscopic scale.

모형실험을 이용한 H말뚝의 지지력 특성 (Characteristics of Bearing Capacity for H pile by Model Test)

  • 오세욱;이준대
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.99-105
    • /
    • 2001
  • This paper presents results km a series of model tests oil vertically loaded single piles to compare the behaviors of H and pipe piles under the same ground condition. The aims of this paper were to compare the bearing capacity of H-pile md pipe piles under in the same ground condition and to estimate the effect of gravity acceleration and relative soil density. Relative density of soil were made to be 40%, 80% and embedded length of pile on sand was increased by 10, 12, 14, 16 times of the diameter of pile, respectively. As a results of test series, allowable load of H-pile is from 6.4% to 18.2% larger than allowable load of pipe pile in relative density 80% and from 9.1% to 39.4% larger than allowable load of pipe pile in relative density 40%. As a results of numerical analysis, we were predicted behaviour of stress-displacement of pile with model test. In the case of relative density 80% and 40%, bearing capacity of H pile represent from 17.74% to 18.6% larger than allowable load of pipe pile.

  • PDF

Experimental and theoretical research on the compression performance of CFRP sheet confined GFRP short pole

  • Chen, Li;Zhao, Qilin;Jiang, Kebin
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.215-231
    • /
    • 2011
  • The axial compressive strength of unidirectional FRP is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. In order to restrain the lateral expansion and splitting of GFRP, and accordingly heighten its axial compressive bearing capacity, a project that to confine GFRP pole with surrounding CFRP sheet is suggested in the present study. The Experiment on the CFRP sheet confined GFRP poles showed that a combined structure of high bearing capacity was attained. Basing on the experiment research a theoretical iterative calculation approach is suggested to predict the ultimate axial compressive stress of the combined structure, and the predicted results agree well with the experimental results. Then the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure are also analyzed basing on this approach.

Effect of Weight-bearing Pattern and Calcaneal Taping on Heel Width and Plantar Pressure in Standing

  • Jung, DoYoung
    • The Journal of Korean Physical Therapy
    • /
    • 제32권1호
    • /
    • pp.29-33
    • /
    • 2020
  • Purpose: This study examined the effects of the weight-bearing pattern and calcaneal taping on the heel width and plantar pressure in standing. Methods: Fifteen healthy subjects with normal feet participated in this study. The heel width was measured using a digital caliper, and a pedoscan was used to measure the plantar pressure of the rear foot while standing. The participants were instructed to stand in three weight-bearing patterns (anterior, middle, and posterior weight bearing) before and after calcaneal taping. The heel width and plantar pressure were measured three times before and three times after calcaneal taping, with the three weight-bearing patterns applied in random order. A 2 (non-taping vs. taping) × 3 (anterior, middle, posterior weight bearing) two-way repeated ANOVA with a Bonferroni post hoc correction was used to assess the differences in heel width and plantar pressure. Results: The results revealed a significant main effect of the weight-bearing pattern (p<.01), but not of calcaneal taping (p>.05). Greater weight bearing applied to the heel resulted in a significantly increased heel width and planter pressure of the rear foot (p<.01). Conclusion: In standing, a posterior weight-bearing pattern increases the heel width due to side-to-side shifting of the plantar heel pad, which increases the heel plantar pressure. Therefore, to prevent high stress on the heel pad and plantar heel pain, it is important to refrain from posterior weight bearing while standing during the activities of daily living.