• Title/Summary/Keyword: bearing stress

Search Result 691, Processing Time 0.024 seconds

Influence of corrosive phenomena on bearing capacity of RC and PC beams

  • Malerba, Pier Giorgio;Sgambi, Luca;Ielmini, Diego;Gotti, Giordano
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.117-143
    • /
    • 2017
  • The attack of environmental aggressive agents progressively reduces the structural reliability of buildings and infrastructures and, in the worst exposition conditions, may even lead to their collapse in the long period. A change in the material and sectional characteristics of a structural element, due to the environmental damaging effects, changes its mechanical behaviour and varies both the internal stress redistribution and the kinematics through which it reaches its ultimate state. To identify such a behaviour, the evolution of both the damaging process and its mechanical consequences have to be taken into account. This paper presents a computational approach for the analysis of reinforced and prestressed concrete elements under sustained loading conditions and subjected to given damaging scenarios. The effects of the diffusion of aggressive agents, of the onset and development of the corrosion state in the reinforcement and the corresponding mechanical response are studied. As known, the corrosion on the reinforcing bars influences the damaging rate in the cracking pattern evolution; hence, the damage development and the mechanical behaviours are considered as coupled phenomena. The reliability of such an approach is validated in modelling the diffusion of the aggressive agents and the changes in the mechanical response of simple structural elements whose experimental behaviour is reported in Literature. A second set of analyses studies the effects of the corrosion of the tendons of a P.C. beam and explores potentially unexpected structural responses caused by corrosion under different aggressive exposition. The role of the different types and of the different positions of the damaging agents is discussed. In particular, it is shown how the collapse mode of the beam may switch from flexural to shear type, in case corrosion is caused by a localized chloride attack in the shear span.

Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel

  • Wang, Hongtao;Li, Shucai;Wang, Qi;Wang, Dechao;Li, Weiteng;Liu, Ping;Li, Xiaojing;Chen, Yunjuan
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2019
  • Pre-tensioned rock bolts can be classified into fully anchored, lengthening anchored and point anchored bolts based on the bond length of the resin or cement mortar inside the borehole. Bolts in varying anchoring methods may significantly affect the supporting effect of surrounding rock around a tunnel. However, thus far, the theoretical basis of selecting a proper anchoring method has not been thoroughly investigated. Based on this problem, 16 schemes were designed while incorporating the effects of anchoring length, pretension, bolt length, and spacing, and a systematic numerical experiment was performed in this paper. The distribution characteristics of the stress field in the surrounding rock, which corresponded to various anchoring scenarios, were obtained. Furthermore, an analytical approach for computing the active and passive strengthening index of the anchored surrounding rock is presented. A new fully anchoring method with pretension and matching technology are also provided. Then, an isolated loading model of the anchored surrounding rock was constructed. The physical simulation test for the bearing capacity of the model was performed with three schemes. Finally, the strengthening mechanism of varying anchoring methods was validated. The research findings in this paper may provide theoretical guidelines for the design and construction of bolting support in tunnels.

A Study on Engineering Characteristics of Load Reducing Material EPS (도로성토하중경감재 EPS의 공학적 특성에 관한 연구)

  • Jang, Myeong-Sun;Cheon, Byeong-Sik;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-70
    • /
    • 1996
  • The EPS has the unit weight of only 20~30kg/m3 and is used as one of the methods of reducing road embankment loads. Parts of it's applications are for backfill materials of structures like abutment, retaining wall, etc., to reduce horizontal earth pressure and for banking materials to secure the safety of settlement and bearing capacity by minimizing the stress Increment. However, the Korean Standards (KS) has not yet proposed any testing method for use of EPS as a engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. Therefore, in Korea, EPS is used as banking material without any systematic testing data as a civil engineering material. In this point of view, this paper deals with the engineering characteristics of EPS through many laboratory tests on strength, strain, absorption, and creep. from the results achived through tests, this paper proposes the enactment of a suitable quality testing ordinance and the criteria of unconfined design strength of EPS for use as engineering material.

  • PDF

Analysis of Piled Raft Interactions in Sand with Centrifuge Test (원심모형실험을 통한 사질토 지반에서의 말뚝지지 전면기초 상호작용 분석)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.27-40
    • /
    • 2012
  • In the design of a piled raft, the axial resistance is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, act as a key element changing resistances of the raft and group piles. In this study, a series of centrifuge model tests have been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) in sands with different relative densities. The test results revealed that the increase of settlement resistance occurs separately with settlement by group pile - soil interactions. The axial resistance of group piles (at piled raft) increases by group pile - raft (pile cap) interactions and that of raft (at piled raft) decreases by group pile - raft (pile cap) interactions.

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

Elevated temperature resistance of concrete columns with axial loading

  • Alaskar, Abdulaziz;Alyousef, Rayed;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.355-365
    • /
    • 2020
  • The influence of temperature on the material of concrete filled columns (CFCs) under axial loading has been quantitatively studied in this research. CFCs have many various advantages and disadvantages. One of the important inefficiency of classic CFCs design is the practical lack of hooped compression under the operational loads because of the fewer variables of Poisson's rate of concrete compared to steel. This is the reason why the holder tends to break away from the concrete core in elastic stage. It is also suggested to produce concrete filled steel tube columns with an initial compressed concrete core to surpass their design. Elevated temperatures have essentially reduced the strengths of steel tubes and the final capacity of CFCs exposed to fire. Thus, the computation of bearing capacity of concrete filled steel tube columns is studied here. Sometimes, the structures of concrete could be exposed to the high temperatures during altered times, accordingly, outcomes have shown a decrement in compressive-strength, then an increase with the reduction of this content. In addition, the moisture content at the minimal strength is declined with temperature rising. According to Finite Element (FE), the column performance assessment is carried out according to the axial load carrying capacities and the improvement of ductility and strength because of limitations. Self-stress could significantly develop the ultimate stiffness and capacity of concrete columns. In addition, the design equations for the ultimate capacity of concrete columns have been offered and the predictions satisfactorily agree with the numerical results. The proposed based model (FE model of PEC column) 65% aligns with the concrete exposed to high temperature. Therefore, computed solutions have represented a better perception of structural and thermal responses of CFC in fire.

Creative Design of Cap for Wheel and Axle of Railway Vehicle by Using TRIZ/CAE (TRIZ/CAE를 활용한 철도차량 윤축용 캡의 창의적 설계)

  • Huh, Yong-Jeong;Kim, Jae-Min;Hong, Sung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2581-2587
    • /
    • 2013
  • This paper aims at the design of wheel and axle with cap. The cap is conceptually designed by using TRIZ/CAE. Wheel axle is used at railway vehicle to safety and it is always investigated to reduce the railway vehicle weight. The cap has hollow shaft with the material of SM45C. Cap is located in the bearing seat of wheel and axle. The cap becomes durable within the allowable stress of EN13103, 13104 standard. In this study, the strength of wheel and axle with cap becomes higher than that of hollow shaft. The weight of wheel and axle with cap becomes lower by about 6.75 percent than that of solid shaft. The confidence of wheel and axle with cap can be improved by comparing with solid and hollow shafts.

A Study on Changes in Biomechanical Characteristics of the Foot with Respect to Wedge-type Insole Thickness (키높이 인솔두께에 따른 족부의 생체역학적 특성변화에 대한 연구)

  • Park, T.H.;Jung, T.G.;Han, D.W.;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.80-90
    • /
    • 2013
  • Recently, functional insoles of wedge-type it is for the young to raise their height inserted between insole and heel cause foot pain and disease. Additionally, these have a problem with stability and excessively load-bearing during gait like high-heel shoes. In this study, we compared the changes in biomechanical characteristics of foot with different insole thickness then we will utilize for the development of the insole with the purpose of relieving the pain and disease. Subjects(male, n = 6) measured COP(center of pressure) and PCP(peak contact pressure) on the treadmill(140cm/s) using F-scan system and different insole thickness(0~50 mm) between sole and plantar surface during gait. Also, we computed changes of stresses at the foot using finite element model with various insole thickness during toe-off phase. COP moved anterior and medial direction and, PCP was increased at medial forefoot surface, $1^{st}$ and $2^{nd}$ metatarsophalangeal, ($9%{\uparrow}$) with thicker insoles and it was show sensitive increment as the insole thickness was increased from 40 mm to 50 mm. Change of the stress at the soft-tissue of plantar surface, $1^{st}$ metatarsal head represents rapid growth($36%{\uparrow}$). Also, lateral moments were increased over the 100% near the $1^{st}$ metatarsal as the insole thickness was increased from 0 mm to 30 mm. And it is show sensitive increment as the insole thickness changed 10 mm to 20 mm. As a result, it was expected that use of excessively thick insoles might cause unwanted foot pain at the forefoot region. Therefore, insole thickness under 30 mm was selected.

Probabilistic Analysis of Fatigue Behavior of Induction Hardened Steel (고주파 열처리된 SAE1055 강의 피로거동 및 이의 확률론적 평가)

  • Lee, Seon-Ho;Lee, Seung-Pyo;Kang, Ki Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.429-436
    • /
    • 2013
  • This study considers how the fatigue behavior and probabilistic properties of SAE1055 steel are related to its hardness level. SAE1055 steel was heat-treated using induction hardening. Five types of specimens were prepared (A: base material, B: through hardened material with HV390, C: through hardened material with HV510, D: through hardened material with HV700, and E: surface hardened material with HV700). Fatigue tests were performed under a stress ratio of R = -1 using a 4-point rotary bending fatigue tester. The fatigue behaviors were greatly influenced by the hardness, but the fatigue limit did not increase over a hardness of HV510. In addition, the effect of the hardness level on the failure mechanism was evaluated using a scanning electron microscope. The probabilistic properties of the fatigue life were investigated using a probabilistic S-N approach, and the effect of the hardness level on these properties was evaluated using a residue analysis.

Stability Analysis and Design of Slope Reinforcing Method Using Anchored or Waste Tyre Wall (앵커 또는 폐타이어 벽체를 이용한 사면보강공법의 안정해석 및 설계)

  • 김홍택;강인규
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.69-84
    • /
    • 1994
  • In the present study, the application of a method of anchored or waste tyre wall in reinforcing the unstable slope is investigated. For design purposes a method of external stability analysis of the reinforced slope, together with a method of internal stability analysis of a wall itself, is presented. In order to predict the passive resistance expected in the anchor or waste tyre Meyerhof's bearing capacity theory is moapaed and experimental results of stress distribution of a pile section under lateral loading is used. Hurray's pull-out teat results are compared with the passive resistances of anchors predicted by the proposed method, and alto the advantages in design are compared with a method of reinforced earth wall with steel strips. Finally a design example of reinforced slope using anchored or caste tyre wall is presented and the overall stability is analyzed in detail by the proposed method of analysis. The efficiency of a method of anchored or waste tyre wall is further analyzed, comparing with a method of changing geometry of the origin리 unstable slope.

  • PDF