• Title/Summary/Keyword: bearing stress

Search Result 691, Processing Time 0.023 seconds

Serum 8 Hydroxydeoxyguanosine and Cytotoxin Associated Gene A as Markers for Helicobacter pylori Infection

  • Yeniova, Abdullah Ozgur;Uzman, Metin;Kefeli, Ayse;Basyigit, Sebahat;Ata, Naim;Dal, Kursat;Guresci, Servet;Nazligul, Yasar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5199-5203
    • /
    • 2015
  • Background: Helicobacter pylori (H.pylori) is associated with chronic gastritis, peptic ulcers, gastric adenocarcinomas and mucosa associated tissue lymphomas. Cytotoxin associated gene A (CagA) is one of the virulence factors of H.pylori. It is hypothesized that reactive oxygen species (ROS) play roles in H.pylori associated disease especially in development of gastric adenocarcinoma. Individuals infected with H.pylori bearing CagA produce more ROS than others. 8-hydroxydeoxyguanosine (8OHdG) is an in vitro marker of DNA damage and oxidative stress. The aim of this study was to investigate the relationship between 8OHdG level, H.pylori infection and CagA and alterations of serum 8OHdG level after H.pylori eradication. Materials and Methods: Patients admitted with dyspeptic complaints and upper gastrointestinal endoscopy were assessed. H.pylori was determined from histopathology of specimens. Serum 8OHdG levels of three groups (H.pylori negative, H. pylori positive CagA negative and H.pylori positive CagA positive) were compared. Patients with H.pylori infection received eradication therapy. Serum 8OHdG levels pretreatment and posttreatment were also compared. Results: In total, 129 patients (M/F, 57/72) were enrolled in the study. Serum 8OHdG level of H.pylori negative, H. pylori positive CagA negative and H.pylori positive CagA positive groups were significantly different ($5.77{\pm}1.35ng/ml$, $5.43{\pm}1.14ng/ml$ and $7.57{\pm}1.25ng/ml$ respectively, p=0.05). Furthermore, eradication therapy reduced serum 8OHdG level ($6.10{\pm}1.54ng/ml$ vs $5.55{\pm}1.23ng/ml$, p=0.05). Conclusions: Individuals infected with H.pylori bearing CagA strains have the highest serum 8OHdG level and eradication therapy decreases the serum 8OHdG level. To the best of our knowledge this is the first study that evaluated the effect of CagA virulence factor on serum 8OHdG level and the effect of eradication therapy on serum 8OHdG levels together. Eradication of CagA bearing H.pylori may prevent gastric adenocarcinoma by decreasing ROS. 8OHdG level may thus be a good marker for prevention from gastric adenocarcinoma.

Structural Constraints on Gold-Silver-Bearing Quartz Mineralization in Strike-slip Fault System, Samkwang Mine, Korea (삼광광산에서의 주향이동단층에 의한 함금-은 석영맥에 대한 구조규제)

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Hong, Dong Pyo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.579-585
    • /
    • 1995
  • The Samkwang mine is Cretaceous gold-silver-bearing deposits located in the western part of the Ogcheon belt The ore deposits have been emplaced within granite gneiss of the Precambrian age. The Au-Ag deposits are hydrothermal-vein type, characterized by arsenic-, gold- and silver-bearing sulphides, in addition to the principal ore-forming sulphides arsenopyrite, galena, sphalerite, chalcopyrite, pyrite and pyrrhotite. Their proven reserves are 355,000 MT, and grades are 8.4 g Au/t and 13.6 g Ag/t. On the basis of their structural characters, the Au-Ag-bearing quartz veins are classified into three types of ore veins; (1) The Main vein shows $N40^{\circ}-80^{\circ}E$ strike and $55^{\circ}-90^{\circ}SE$ dip, (2) the Sangban vein shows E-W strike and $30^{\circ}-40^{\circ}S$ dip, and (3) the Gukseong vein has $N25^{\circ}-40^{\circ}W$strike and $65^{\circ}-80^{\circ}SW$ dip. The emplacements of the ore veins are closely related to the minimum stress axis $({\sigma}_3)$ during the strike-slip movement of the study area. The ore-bearing veins filled with extension fractures during strike-slip movements were sequentially emplaced as follows: I) When ${\sigma}_1$ operates obliquely to NE-series discontinous surface, the Main fault zone $(F_1)$ developes. 2) During the same time, extension fractures ($T_1$ Gukseong veins) take place. 3) When the fault progress continuously, the existing $T_1$, may be high angle and $T_2$ (Daehung vein) developes continuously. 4) When ${\sigma}_1$ changes to sinistral sense, $T_3$ (basic dyke) occurs. 5) When a reverse fault becomes active, the Sangban vein is branched from the Guksabong vein.

  • PDF

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF

Numerical Investigation on Combined Load Carrying Capacity and Consolidation Behavior of Suction Piles (석션파일의 조합하중 지지력 및 압밀거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Hong, Seung-Rok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.103-116
    • /
    • 2014
  • This paper presents the results of a numerical investigation on the load carrying capacity and consolidation behavior of suction piles. Three dimensional numerical models which reflect realistic ground conditions and installation procedures including the ground-suction pile interface were adopted to conduct a parametric study on variables such as the length-diameter ratio and the loading configurations, i.e, vertical, horizontal, and combined loads. The results indicated that the load carrying capacity of a suction pile can only be realistically obtained when the interface behavior between the suction pile and the ground is correctly modeled. Also carried out was the stress-pore pressure coupled analysis to investigate the consolidation behavior of the suction pile after the application of a vertical loading. Based on the results, failure envelops and associated equations were developed, which can be used to estimate load carrying capacity of suction piles installed in similar conditions considered in this study. The results of consolidation analysis based on the stress-pore pressure coupled analysis indicate that no significant excess pore pressure and associated consolidation settlement occur for the loading configuration considered in part due to the load transfer mechanism of the suction pile.

Pullout Characteristics of Waste Fishing Net Reinforced Bottom Ash using Pullout Test (인발시험에 의한 저회에 보강된 폐어망의 인발특성 연구)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • In this study, pullout tests were carried out to evaluate pullout characteristics of waste fishing net (WFN), which added into bottom ash for recycling both bottom ash and WFN. Three different mesh size of WFN (WFN20:$20mm{\times}20mm$, WFN30:$30mm{\times}30mm$, WFN40:$40mm{\times}40mm$) and geogrid were added as a reinforcement. Pullout characteristics of waste fishing net were compared with those of the geogrid. Pullout test results showed that pullout strength and stiffness of WFN20 are a little less than those of geogrid. However, the pullout friction angle of WFN20 is similar to that of geogrid due to bearing resistance induced from transverse rib because thickness of WFN20 is greater than geogrid. Pullout test results also indicated that distribution of residual strain along reinforcement after test depends on overburden stress. Residual strain at the tip of reinforcement increased with an increase in overburden stress due to concentration of pullout force on the tip of reinforcement.

TIME-DEPENDENT DEFORMATION OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Pae Ahran;Jeong Mi-Sook;Kim Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.717-726
    • /
    • 2005
  • Statement of problem. One of the common problems of provisional crown and fixed partial denture materials is that when they are subjected to constant loads for a long period of time, they exhibit a dimensional change (creep). Purpose. The aim of this study was to investigate the viscoelastic behaviour of polymer-based provisional crown and fixed partial denture materials with time at constant compressive load. Material and methods. Three dimethacrylate-based materials (Protemp 3 Garant, Temphase, Luxatemp) and one monomethacrylate-based material (Trim) were selected. Dimensional changes of the specimens were recorded by a LVDT to evaluate their viscoelastic behavior and creep strain. For all specimens, two loading procedures were used. At first, static compressive stress of 4 MPa was applied for 30 minutes and followed by 1 hour of strain recovery. Then, after 24 hours of water storage, the specimens were loaded again. The creep values between materials were statistically analyzed using one-way ANOVA and multiple comparison $Scheff\acute{e}$ test. Independent samples t-test was also used to identify the difference of creep strain between first and secondary loading conditions at the significance level of 0.05. Results. Following application of the first loading, Trim showed the highest maximum creep strain (32.7%) followed by Luxatemp, Protemp 3 Garant and Temphase, with values of 3.78%, 2.86% and 1.77%, respectively. Trim was significantly different from other materials (P<0.05), while there were no significant differences among Luxatemp, Protemp 3 Garant and Temphase (P>0.05). The highest recovery and permanent set of Trim, were significantly different from those of others (P<0.05). At the secondary loading of the dimethacrylate-based materials, creep deformation, recovery and permanent set decreased and the percentage of recovery increased, while in Trim, all values of the measurements increased. This result showed that the secondary loading at 24 hours produced a significant creep magnitude. Conclusion. The dimethacrylate-based provisional crown and fixed partial denture materials showed significantly higher creep resistance and lower deformation than the monomethacrylate-based material. Thus, monomethacrylate-based materials should not be used in long-term stress-bearing situations.

Three-Dimensional Finite Element Analysis of Micromotion of the Straight and the Curved Femoral Stem in Cementless Hip Arthroplasty (인공고관절 직선형 대퇴 stem과 곡선형 대퇴 stem의 미세운동비교 - FEM 3차원 모델을 이용한 분석 -)

  • Kim, S.K.;Chae, S.W.;Jeong, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.245-248
    • /
    • 1997
  • Excessive stress on the bone-stem interface may cause local micromotion that could produce midthigh pain, interface bone resorption and prevent bony ingrowth. It is important for clinician and prosthetic designer to develop an understanding of the load transfer mechanism, its associated stress pattern and its relationships with the particular mechanical characteristics of the femoral stem designs. Finite element method (FEM) is preeminently suited to provide information in this respect. The authors developed 3-dimensional numerical finite element models implanted with the straight stem which is composed of total 1170 elements of 8 nodes and with the curved stem which is composed of total 885 elements of 8 node, and analysed the relative micromotions between the straight stem and the curved stem in immediate postoperative stage of an uncemented total hip replacement in load simulating the single leg stance. The results showed that the rotational displacement was occupied over 90% of total micromotion in both types of stem and was peak at the proximal medial portion of the stem, but markedly less distally. The curved stem was more stable especially in terms of rotational stability. It is recommended that surgeons do not allow the patient weight bearing until bony ingrowth was achieved. In the future more attention should be drawn to increase initial rotational stability of the two types of femoral stem to prevent loosening from excessive micromotion.

  • PDF

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

Analysis of Sand Compaction Piles Under Flexible Surcharge Loading (연성하중을 받는 모래다짐말뚝(SCP)의 거동분석)

  • 홍의준;김재권;정상섬;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.223-233
    • /
    • 2003
  • Sand compaction pile (SCP) is one of the ground improvement techniques which are being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model tests and 3-D finite element analyses were performed to investigate the interaction between sand compaction piles and surrounding soft soils. Based on the results obtained, as the area replacement ratio increases, the stress concentration ratio increases at the pile point, the settlement decreases, and the relative displacement between column and soil also decreases. It is also found that numerical study is illustrated by good comparison with model test results, and the numerical analysis revealed slip effects which could not be specifically identified in the model tests.