• Title/Summary/Keyword: bearing stress

Search Result 681, Processing Time 0.028 seconds

Study on bearing characteristic of rock mass with different structures: Physical modeling

  • Zhao, Zhenlong;Jing, Hongwen;Shi, Xinshuai;Yang, Lijun;Yin, Qian;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-194
    • /
    • 2021
  • In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) × 1000 mm (length) × 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.

Development of a fatigue life Prediction Program for the Hub Bearing Unit (허브 베어링 유닛 수명 예측 프로그램 개발)

  • Hwang Chul-Ha;Jun Kab-Jin;Yoon Ji-Won;Park Tae-Won;Kim Seung-Hak;Yi Kyung-Don
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.142-151
    • /
    • 2005
  • To predict the fatigue life of the Hub Bearing Unit(HBU), preload effect and initial axial clearance have to be considered. Various theory and equations for the HBU design used in the passenger car are well developed in many literatures. But most design hand book for bearings or bearing catalogues do not consider the initial axial clearance and preload effect. So there are limits and difficulties to use those data in actual bearing design. To consider the preload effect and initial axial clearance, complex elliptic integrals and nonlinear equations are involved. These equations are difficult to solve during the design process. In order to solve these problems effectively, a program is developed to solve these equations reliably and to help the designer in obtaining the performance data of the HBU such as load distribution, maximum contact stress and fatigue life. The preprocessor of the program helps users to prepare the input data through a dialog box and the post processor makes graphical presentation of the result. In this paper, theoretical and numerical background for the prediction of the fatigue life of the HBU is explained. A simple example is presented to show the usefulness of developed program.

Early Unrestricted Weight-Bearing in a Stirrup Brace Following the Broström Procedure with Suture Tape for Chronic Lateral Ankle Instability (족관절 외측의 만성 불안정성에 Broström 술식과 Suture Tape을 이용한 보강술 후 조기에 시행한 등자보호대 착용 및 체중부하 보행)

  • Jaeyoung, Lee;Geon-Ho, Kwon;Jin-Wha, Chung
    • Journal of Korean Foot and Ankle Society
    • /
    • v.26 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • Purpose: This study reports on a series of patients with chronic lateral ankle instability that underwent the Brostrom procedure with suture tape augmentation and allowed early unrestricted weight-bearing in a simple stirrup brace. Materials and Methods: This retrospective study was conducted on 36 patients (22 males and 14 females of mean age 34 years [range 23~48 years]) with chronic lateral ankle instability treated using the Brostrom procedure using suture tape augmentation and inferior extensor retinaculum reinforcement with a fiber-wire connected to a SwiveLock screw inserted into the talus. When possible, patients started unrestricted weight-bearing in a stirrup brace from the third postoperative day. Demographics and functional outcomes, including American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot, visual analogue scale (VAS), and satisfaction scores, were recorded. In addition, varus stress radiographs obtained before and 24 months after surgery were compared. Patients were followed for a mean 29 months (range 25~40 months). Results: Mean AOFAS ankle-hindfoot scores increased from 51 points preoperatively to 92 points at final follow-up, and mean VAS decreased from 6.8 to 1.2 points. Mean patient satisfaction scores were 8.7 at 12 months and 9.6 at 24 months. Stress radiographs demonstrated that talar tilt decreased from a mean 18 degrees preoperatively to 7 degrees at 24 months. Conclusion: Early unrestricted weight-bearing in a stirrup brace following the Brostrom procedure with suture tape augmentation is a successful protocol for treating chronic lateral ankle instability.

Determination of CPT-based Bearing Capacity of Footings Under Surcharge Using State-dependent Finite Element Analysis (상태의존성 유한요소해석 및 CPT결과를 적용한 상재하중하의 얕은 기초의 지지력 결정)

  • Lee Jun-Hwan;Kim Dae-Ho;Park Dong-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.55-62
    • /
    • 2005
  • The use of the bearing capacity equation is subjected to several uncertainties. In this study, estimation of the bearing capacity of footings based on the cone resistance q$_{c}$ is investigated. Non-linear finite element analyses based on a state-dependent stress-strain model were performed to obtain the load-settlement responses of axially loaded circular footings. Various soil and footing conditions, including different relative densities, depths of embedment, and footing diameters were considered in the analyses. Based on the finite element results, load-settlement curves were obtained and used to determine the unit limit bearing capacity in terms of the cone resistance q$_{c}$ for footings subjected to surcharge. Values of the unit bearing capacity for different embedment depths were in a narrow range, while considerable variation was observed with relative density D$_{R}$. It was observed that the unit limit bearing capacity normalized with respect to q$_{c}$ decreases as D$_{R}$ increases for a given surcharge.

Experimental device for studying natural GH-bearing specimens (GH 함유 자연시료 실험 연구 셀 제작 및 활용사례)

  • Lee, Joo-Yong;Lee, Jae-Hyung;Lee, Min-Hui
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.703-704
    • /
    • 2009
  • Natural gas Hydrate is an ice-like crystal containing natural gas it. Natural gas hydrate is studied as a new energy resource and a factor for seafloor slope stability and global warming. The unique pressure and temperature stability conditions of natural gas hydrate have challenged the research efforts. In this study, a new tool to study hydrate-bearing sediments and the preliminary results are introduced. The device can sustain 20MPa of the fluid pressure and apply 5MPa of the vertical effective stress under the temperature control. Cell can be scanned by X-ray CT scanner and also has the capability of multi-sensor data acquisition. Preliminary results suggests various application of the cell to hydrate-bearing research.

  • PDF

Finite Element Analysis for Performance Evaluation of the Seal in a Universal Joint Bearing (유니버설 조인트 베어링용 시일의 성능평가를 위한 유한요소해석)

  • Kim, Tae-Wan;Moon, Suk-Man;Koo, Young-Pil;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.140-146
    • /
    • 2001
  • Seals in a universal joint bearing are important components reinforcing lubrication performance by holding lubricant and preventing infiltration of dust, moisture, etc.. There is a great difference in seal performance according to seal shape and bonding position. Therefore, in this study, as for both the lip type seal and the O-ring type seal, FE analysis is conducted using Mooned-Rivlin Model. The results show that O-ring type seal does not have any effect of misalignment angle compared with lib type seal, which is more profitable.

  • PDF

FTA(Falut tree Analysis)기법을 이용한 이송용 로울러베어링 고장 진단

  • 배용환;이석희;이형국;최진원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.325-329
    • /
    • 1992
  • The development of automatic production system have required intelligent diagnostic and monitoring function to repair system failure and reduce production loss by the failure. In order to perform accurate functions of intelligent system, inference about total system failure and fault analysis due to each mechanical component failures are required. Also the solution about repair and maintenance can be suggested from these analysis results. Generally, bearing is a essential mechanical component in the machinery. The bearing failure is caused by lubricant system failure, metallurgical defficiency, mechanical condition(vibration overloading misalignment), environmental effect. This study described roller bearing fault train due to stress variation and metallurgical defficiency from lubricant failure by using FTA.

Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set (핀 휠을 구비한 외륜형 선회베어링의 면압강도)

  • Kwon, Soon-man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.

A Case Study on the Plan for Settlement Restraint by CGS (CGS 공법에 의한 지반침하억제 사례연구)

  • 천병식;여유현;김우종;황성식;김우철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.611-618
    • /
    • 2002
  • In this study the CGS as an injection method by low slump mortar was performed the pilot test to confirm the applicability of this method and the effectiveness of settlement restraint. From the results, there has been concluded the construction control standard such as an institutional diameter, space, depth, injection materials, Infection pressure etc. Also, there has been estimated the ground improvement effectiveness which has resulted from the field investigation and consolidation test etc. From the results, in the adjacent ground the CGS, generally, has been confirmed to in-crease ground strength to improve the consolidation characteristic obtained from the field investigation and consolidation test. Especially, the CGS which performed the larger stiffness to the ground has been concluded that the settlement restraint to the ground complicates the ground effect which Increases the bearing capacity and stress assignment. So, the CGS can be considered as an effective method to increase the bearing capacity as well as the settlement restraint of soft ground.

  • PDF

Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging (폐색정도를 고려한 개단말뚝의 지지력 산정)

  • 백규호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF