• 제목/요약/키워드: bearing stress

검색결과 681건 처리시간 0.021초

초고층 건물의 전면기초(MAT기초) 해석 및 설계 (ANALYSIS AND DESIGN OF MAT FOUNDATION FOR HIGH-RISE BUILDINGS)

  • 홍원기;황대진;권장혁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.94-110
    • /
    • 1994
  • Types of foundation of high rise buildings are primarily determined by loads transmitted from super structure, soil bearing capacity and available construction technology. The usd of deep foundation cannot be justified due to the fact that rock of enough bearing capacity is not found down until 90 ~ 100m. When a concentration of high soil pressure must be distributed over the entire building area, when small soft soil areas must be bridged, and when compressible strata are located at a shallow depth, mat foundation may be useful in order to have settlement and differential settlement of variable soils be minimized. The concept of mat foundation will also demonstrate some difficulities of applications if the load bearing demand directly carried down to the load -bearing strata exceeds the load -bearing capacity. This paper introduces both the analysis and design of mat type foundation for high rise buildings as well as the methodology of modelling of the soil foundation, especially, engineered to redistribute the stress exceeding the soil bearing capadity. This process will result in the wid spread of stresses over the entire building foundation.

  • PDF

Seismic bearing capacity of shallow embedded strip footing on rock slopes

  • Das, Shuvankar;Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.123-138
    • /
    • 2022
  • Present study computes the ultimate bearing capacity of an embedded strip footing situated on the rock slope subjected to seismic loading. Influences of embedment depth of strip footing, horizontal seismic acceleration coefficient, rock slope angle, Geological Strength Index, normalized uniaxial compressive strength of rock mass, disturbance factor, and Hoek-Brown material constant are studied in detail. To perform the analysis, the lower bound finite element limit analysis method in combination with the semidefinite programming is utilized. From the results of the present study, it can be found that the magnitude of the bearing capacity factor reduces quite substantially with an increment in the seismic loading. In addition, with the increment in slope angle, further reduction in the value of the bearing capacity factor is observed. On the other hand, with an increment in the embedment depth, an increment in the value of the bearing capacity factor is found. Stress contours are presented to describe the combined failure mechanism of the footing-rock slope system in the presence of static as well as seismic loadings for the different embedment depths.

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권4호
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Bearing capacity at the pile tip embedded in rock depending on the shape factor and the flow

  • Ana S. Alencar;Ruben A. Galindo;Miguel A. Millan
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.443-455
    • /
    • 2023
  • This is a research analyses on the bearing capacity at a pile tip embedded in rock. The aim is to propose a shape coefficient for an analytical solution and to investigate the influence of the plastic flow law on the problem. For this purpose, the finite difference method is used to analyze the bearing capacity of various types and states of rock masses, assuming the Hoek & Brown failure criterion, by considering both plane strain and an axisymmetric model. Different geometrical configurations were adopted for this analysis. First, the axisymmetric numerical results were compared with those obtained from the plane strain analytical solution. Then the pile shape influence on the bearing capacity was studied. A shape factor is now proposed. Furthermore, an evaluation was done on the influence of the plastic flow law on the pile tip bearing capacity. Associative flow and non-associative flow with null dilatancy were considered, resulting in a proposed correlation. A total of 324 cases were simulated, performing a sensitivity analysis on the results and using the graphic output of vertical displacement and maximum principal stress to understand how the failure mechanism occurs in the numerical model.

스트레인게이지를 이용한 회전체의 축정렬 연구 (A Study on Shaft Alignment of the Rotating Machinery by Using Strain Gages)

  • 김경석;장완식;나상수;정현철
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.126-132
    • /
    • 2002
  • Misaligned shafts of the rotating machinery have caused noise, vibration. bearing failures, and stress concentration of coupling parts which decrease the efficiency and life of shaft systems. Therefore the proper shaft alignment of those system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition a telemetry system is used. In this study, the condition of the least bending moment which is known by analyzing the structure and stress induced by misalignment is found. After the shaft is aligned by dial gage, a telemetry system with strain gages is installed on shaft. The relationship between bearing displacement and moment of coupling part influenced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as in dynamic state with 100∼700 rpm.

Confinement coefficient of concrete-filled square stainless steel tubular stub columns

  • Ding, Fa-xing;Yin, Yi-xiang;Wang, Liping;Yu, Yujie;Luo, Liang;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.337-350
    • /
    • 2019
  • The objective of this paper is to investigate the confinement coefficient of concrete-filled square stainless steel tubular (CFSSST) stub columns under axial loading. A fine finite 3D solid element model was established, which utilized a constitutive model of stainless steel considering the strain-hardening characteristics and a triaxial plastic-damage constitutive model of concrete with features of the parameter certainty under axial compression. The finite element analysis results revealed that the increased ultimate bearing capacity of CFSSST stub columns compared with their carbon steel counterparts was mainly due to that the composite action of CFSSST stub columns is stronger than that of carbon steel counterparts. A further parametric study was carried out based on the verified model, and it was found that the stress contribution of the stainless steel tube is higher than the carbon steel tube. The stress nephogram was simplified reasonably in accordance with the limit state of core concrete and a theoretical formula was proposed to estimate the ultimate bearing capacity of square CFSSST stub columns using superposition method. The predicted results showed satisfactory agreement with both the experimental and FE results. Finally, the comparisons of the experimental and predicted results using the proposed formula and the existing codes were illustrated.

대수심 대구경 현장타설말뚝의 지지력에 대한 신뢰성 해석을 이용한 허용응력 설계의 파괴확률 평가 연구 (A Study on Estimation of Failure Probability of Allowable Stress Design using Reliability Analysis to the Bearing Capacity the Deep Water Depth Large-diameter Drilled Shaft)

  • 한유식;이윤규;최용규
    • 한국지반환경공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.43-51
    • /
    • 2014
  • 시험 설계된 초장대 사장교의 고주탑을 지지하는 대수심 대형 복합기초의 지중 대구경 현장타설말뚝을 허용응력 설계법으로 설계하고, 지지력에 대한 신뢰성 해석을 통해 파괴확률을 평가하였다. 말뚝의 지지력에 대한 허용응력 설계 결과를 신뢰성 해석으로 분석하였으며 파괴확률은 CFEM의 경우 0.12 %, 한국도로공사기준 방법의 경우 0.0002 %, 구조물기초설계기준의 경우 0.003 %였다. 허용응력 설계에서는 안전율 3을 적용하여 대구경 현장타설말뚝의 허용지지력을 구하였으며, 그 결과에 대한 신뢰성 해석을 실시하였다. AASHTO(2007)에서 제시하고 있는 파괴확률($P_f$) 0.02 %일 때 CFEM 방법에서는 근입 깊이가 25 % 만큼 증가하였으며 한국도로공사기준(KHCC)에서는 근입깊이를 60 %, 구조물기초설계기준(SFDC)에서는 근입 깊이를 89 % 만큼 감소시킬 수 있었다.

Effect of the restorative technique on load-bearing capacity, cusp deflection, and stress distribution of endodontically-treated premolars with MOD restoration

  • da Rocha, Daniel Maranha;Tribst, Joao Paulo Mendes;Ausiello, Pietro;Dal Piva, Amanda Maria de Oliveira;Rocha, Milena Cerqueira da;Di Nicolo, Rebeca;Borges, Alexandre Luiz Souto
    • Restorative Dentistry and Endodontics
    • /
    • 제44권3호
    • /
    • pp.33.1-33.12
    • /
    • 2019
  • Objectives: To evaluate the influence of the restorative technique on the mechanical response of endodontically-treated upper premolars with mesio-occluso-distal (MOD) cavity. Materials and Methods: Forty-eight premolars received MOD preparation (4 groups, n = 12) with different restorative techniques: glass ionomer cement + composite resin (the GIC group), a metallic post + composite resin (the MP group), a fiberglass post + composite resin (the FGP group), or no endodontic treatment + restoration with composite resin (the CR group). Cusp strain and load-bearing capacity were evaluated. One-way analysis of variance and the Tukey test were used with ${\alpha}=5%$. Finite element analysis (FEA) was used to calculate displacement and tensile stress for the teeth and restorations. Results: MP showed the highest cusp (p = 0.027) deflection ($24.28{\pm}5.09{\mu}m/{\mu}m$), followed by FGP ($20.61{\pm}5.05{\mu}m/{\mu}m$), CR ($17.62{\pm}7.00{\mu}m/{\mu}m$), and GIC ($17.62{\pm}7.00{\mu}m/{\mu}m$). For load-bearing, CR ($38.89{\pm}3.24N$) showed the highest, followed by GIC ($37.51{\pm}6.69N$), FGP ($29.80{\pm}10.03N$), and MP ($18.41{\pm}4.15N$) (p = 0.001) value. FEA showed similar behavior in the restorations in all groups, while MP showed the highest stress concentration in the tooth and post. Conclusions: There is no mechanical advantage in using intraradicular posts for endodontically-treated premolars requiring MOD restoration. Filling the pulp chamber with GIC and restoring the tooth with only CR showed the most promising results for cusp deflection, failure load, and stress distribution.

모형토조실험을 통한 말뚝지지력의 평가 (Evaluation of Pile Bearing Capacity using Calibration Chamber Test)

  • 이인모;이명환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1992년도 봄 학술발표회 논문집 깊은 기초의 연구와 실무(RESEARCH AND PRACTICE OF DEEP FOUNDATIONS)
    • /
    • pp.13-40
    • /
    • 1992
  • Static formulae based on limiting equilibrium theories often provide misleading predictions of pile bearing capacity in cohesionless soils due to the incorrect basic assumptions or oversimplification of actual soil conditions. Soil conditions prior to pile driving are significantly changed after pile installation and imposition of high stress levels. Therefore soi1 parameters at failure rather than those obtained at initial conditions should be used in application of static formulae. In this research. model pile test data were analyzed and compared with the predicted values obtained from the various static formulae. The results showed that the proper choice of soil parameters remarkably improve the reliability of static formulae.

  • PDF

고성능 적층고무 면진장치의 요구 성능 (Demand Capacities of Rubber Bear ing for Seismic Isolated Building)

  • 황기태;임종만;김동원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.487-494
    • /
    • 2006
  • The ultimate capacities of a rubber bearing are defined by compressive stress, shear strain, and stabilized roster ing force. The experiments were conducted with parameters of shesr elasticity(G) and first shape factor(S1), second shape factor(S2) for rubber bearing. Considering with test results, the ultimate capacities were verified, and furthermore the influence of those parameters were clarified. Using test results stable deformation of rubber bearings for designing was proposed.

  • PDF