• Title/Summary/Keyword: bearing stress

Search Result 681, Processing Time 0.025 seconds

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

Effect of cohesion of infill materials on the performance of geocell-reinforced cohesive soil subgrade

  • Yang Zhao;Zheng Lu;Jie Liu;Lei Ye;Weizhang Xu;Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.301-315
    • /
    • 2023
  • Adopting cohesive soil as geocell-pocket infill materials is not fully accepted by researchers in the field of road engineering. The cohesion that may inhibit the lateral limitation of geocells is a common vital idea that exists within every researcher. However, the influence of infill materials' cohesion on geocell-reinforced performance is still not thoroughly determined. The mechanism behind this still needs to be studied in depth. This study initially discussed the relationship between subgrade bearing capacity, geocells' contribution to reinforced performance, and infill materials' cohesion (IMC). A law was proposed that adopting the soil with high cohesion as infill materials benefited the subgrade bearing capacity, but this was attributed to the superior mechanical properties of infill materials rather than geocells' contribution. Moreover, the vertical and lateral deformation of subgrade, coupling shear stress and confining stress of geocells, and deformation of geocells were deeply studied to analyze the mechanism that high cohesion can inhibit the geocells' contribution. The results indicate that the infill materials with high cohesion result in the total displacement of the subgrade toward to deeper depth, not the lateral direction. These responses decrease the vertical coupling shear stress, confining stress, and normal displacement of geocell walls, which weaken the lateral limitation of geocells.

Responses and Stresses of Structural Vibration of a Camshaft (캠축의 구조 진동 응답 및 응력)

  • Choi, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.208-213
    • /
    • 2013
  • To get vibration responses, a camshaft is modelled as an unbalanced multiple rotor bearing system. Because of complex geometry and complicated load conditions, the finite element method is used. After the finite element equation of the system is constructed, Newmark's method is used to get the vibration responses. Whirl vibration responses of a V-8 engine camshaft are estimated and compared with measured responses. After the fluctuating stresses are obtained, fatigue analysis is performed based upon the modified Goodman's equation. Stress concentration effects are considered. In the whirl vibration of camshafts, the bending effect is dominant, and the bending deformation is dependent upon the span length between the adjacent bearing journals. For high speeds, the fluctuations of excitation forces are large, and it is known that nonlinear time varying bearing coefficients should be used for analysis.

A Foundation Study on the Selection of Bearing Lubrication Conditions in High-speed Spindle (초고속 스핀들의 윤활조건 선정을 위한 기초 연구)

  • Ahn, Sung Hwan;Lee, Choon Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • Recently, a high speed cutting is essential requirement to satisfy latest demand of high precision product and machining of hard materials. However heat generation by high speed rotation causes many problems. The machining error and shortening spindle lifetime by thermal stress is typical example. Generation of heat is mostly caused by sliding at the rotor and bearing. For minimization of heat generation at bearing, decision of the condition of proper lubrication is necessary. The thermal study about 40,000rpm spindle by changing the condition of oil-air lubrication method is carried out in this paper. The results of this paper can be used effectively in the decision of oil-air lubrication condition of other types of spindle for machine tools.

  • PDF

A Study on the Prevention of Cracks on the Trepan Area of Motor Bearing

  • Lee, Kyung-Won;Ban, Jae-Sam;Kang, Heyong-Seon;Cho, Kyu-Zong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.215-220
    • /
    • 2003
  • Trepan prevents the wear of the inside part of a bearing when the initial shaft rotates. It continuously contacts with the eccentric part of the shaft in rotation and is loaded repeatedly. Therefore, even if an early crack of a trepan part is small, the crack may progress by the repeated load. If the crack progresses, very small chips come out. This Is put in the rotor and prevents the rotation of the compressor, There can be leaks in a microgroove and extreme wear can occur due to lack of oil on the surface contact part. Therefore, this study was carried out to compare and investigate the trepan strength and deflection characteristics between trepan locations and dimension changes using the finite element method and search a motor bearing for a model with bigger stiffness of a trepan part and the same deflection.

End Bearing Capacity of a Pile in Cohesionless Soils (사질토에 있어서 말뚝의 선단부 지지력)

  • 이명환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1988.06c
    • /
    • pp.71-123
    • /
    • 1988
  • The aim of this paper is to examine the end bearing capacity of a pile in cohesionless soils. The ode of failure of soil due to pile installation is assumed from experimental observation of actual soil deformation. A new solution is proposed complying with the assumed mode of failure by employing the theory of cavity expansion. The effect of curvature of failure envelope is studied in relation to tile proposed solution. The influence of a curved failure envelope becomes larger with increasing degree of curvature and the level of confining stress. This effect in some cases or reduce the end bearing capacity by tore the 80 percent compared with that given by a straight failure envelope. For practical application of tile proposed solution, the method of determining the average volume change in the plastic zone is re-evaluated. The proposed solution is confirmed by comparing the theoretical values with experimental results obtained from model pile tests in a calibration chamber. The comparison shows that the proposed solution provides a reasonable prediction of end bearing capacity for both weak and strong grained soils.

  • PDF

TREPAN SHAPE MODIFICATION OF MOTOR BEARING (모터 베어링의 트레판 형상 수정에 관한 연구)

  • 이경원;반재삼;강형선;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.950-953
    • /
    • 2002
  • Trepan prevents wear of an inside part of a bearing when the initial shaft rotates. It continuously contacts with the eccentric part of the shaft in rotation and is loaded repeatedly. Therefore, even if an early crack of a trepan part is small, a crack progresses by a repeated load. If a crack progresses, very small chips come out. This is pill in the rotor and prevents rotation of the compressor. There can be leaks in a microgroove and extreme wear can occur due to lack of oil on the surface contact pan. Therefore, this study was carried out to compare and investigate trepan strength and deflection characteristics between trepan locations and dimension changes using a finite element method and search a motor bearing for a model with bigger stiffness of a trepan part and the same deflection. And then. five different types of the oil groove model were chosen to prevent small crack and considered also machining ability and the analysis was carried out on oil feeding flow.

  • PDF

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement

  • Chen, Zongping;Xu, Ruitian
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • The axial compression behavior of nine self-compacting concrete columns confined with CFRP-PVC spirals was studied. Three parameters of spiral reinforcement spacing, spiral reinforcement diameter and height diameter ratio were studied. The test results show that the CFRP strip and PVC tube are destroyed first, and the spiral reinforcement and longitudinal reinforcement yield. The results show that with the increase of spiral reinforcement spacing, the peak bearing capacity decreases, but the ductility increases; with the increase of spiral reinforcement diameter, the peak bearing capacity increases, but has little effect on ductility, and the specimen with the ratio of height to diameter of 7.5 has the best mechanical properties. According to the reasonable constitutive relation of material, the finite element model of axial compression is established. Based on the verified finite element model, the stress mechanism is revealed. Finally, the composite constraint model and bearing capacity calculation method are proposed.

Evaluation of Bearing Capacity of Multi-layered Soil Deposits (개별요소법에 의한 다층지반의 지지력 산정)

  • Park Jun;Jee Sung-Hyun;Lee Seung-Rae;Park Hyun-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.63-69
    • /
    • 2006
  • In this paper, a method is presented for estimating the bearing capacity of shallow foundations based on the Discrete Element Method (DEM). By applying Winkler-springs for accounting for the compatibility between soil blocks, the proposed method can estimate the state of stress at failure surface and the ultimate bearing capacity. For the investigation of the application of the method, example problems about shallow foundations on the single layer and two layers soil are analyzed.