• Title/Summary/Keyword: bearing parameters

Search Result 757, Processing Time 0.028 seconds

선단압력이 틸팅 패드 추력베어링의 운전특성에 미치는 영향 (Effects of inlet pressure build-up on the running characteristics of tilting pad thrust bearing)

  • 이경우;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.85-91
    • /
    • 1998
  • In this paper, an influence of inlet pressure on the running characteristics of tilting pad thrust bearing is studied by a numerical analysis. The inlet pressure is obtained from the extended Bernoulli equation including the loss coefficient which is varied with the operating conditions. The running characteristic parameters such as the minimum film thickness, the film pressure and the film thickness ratios are calculated for various runner speeds with constant load in particular two pivot positions. The results are shown that the inlet pressure has a large influence on the minimum film thickness and other running characteristic parameters.

  • PDF

크랭크 샤프트 연삭기용 유정압 스핀들의 유막 간격 선정에 관한 연구 (A Study on the Determination of the Oil Gap in the Hydrostatic Spindle System for a Crank Shaft Grinding Machine)

  • 박동근;최치혁;이인재;이춘만
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.410-415
    • /
    • 2011
  • A cylindrical type of self-controlled restrictor is designed for hydrostatic bearing of crank shaft for a grinding wheel spindle. The effect of operation parameters, clearance between spindle and housing on bearing stiffness are analyzed to determine the optimum conditions of operation parameters. The lowest values of the supply pressure and the loads by the theoretical and experimental results assuming oil film thickness and shape of pocket are compared.

하이브리드 스러스트 마그네틱 베어링의 설계 파라미터 도출 및 특성해석 (Characteristics and design parameter deduction of hybrid thrust magnetic bearing)

  • 장석명;이운호;고경진;최지환;성소영;이용복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.52-54
    • /
    • 2009
  • This paper deals with design parameters deduction and analysis of hybrid magnetic bearing. Using the solutions obtained from equivalent magnetic circuit, we predict the electromagnetic characteristics from permanent magnet and electromagnet and obtain the initial parameters. And then, using non-linear finite element analysis, a detailed design is performed considering saturation and asymmetry of flux density at the surface in order to meet requirements.

  • PDF

현장 불평형 응답을 이용한 로터-베어링 시스템의 매개변수 규명 연구 (A Study on Identifying Dynamic Characteristic Parameters of Rotor Bearing Systems Using Field Measurement Data of Unbalance Responses)

  • 이동환;김영일;박노길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.605-611
    • /
    • 2000
  • Presented in this paper is a new method of identifying the critical speed of rotor-bearing systems without actually reaching at the critical speed itself. Using the method, it is not only possible to calculate the critical speed by measuring a series of rotor responses at much lower rotating speeds away from and without reaching at the critical speeds but also the damping ratio and eccentricity of the system can be identified at the same time. Two types of test rotors were tested on the Rotor Dynamics Test Facility at the Rotordynamics Lab., KIMM, and the theory has been confirmed experimentally. The method can be adopted to monitor changes of the dynamic characteristics of critical rotating machinery before and after overhauls, repairs, exchanges of various parts, or to detect trends of direction of subtle changes in the dynamic characteristic parameters over a long periods of time.

  • PDF

Settlement analysis of pile cap with normal and under-reamed piles

  • Kumar, Madisetti Pavan;Raju, P. Markandeya;Jasmine, G. Vincent;Aditya, Mantini
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.525-535
    • /
    • 2020
  • The use of pile foundations has become more popular in recent years, as the combined action of the pile cap and the piles can increase the bearing capacity, reduce settlement, and the piles can be arranged so as to reduce differential deflection in the pile cap. Piles are relatively long, slender members that transmit foundation loads through soil strata of low bearing capacity to deeper soil or rock strata having a high bearing capacity. In this study analysis of pile cap with considering different parameters like depth of the pile cap, width and breadth of the pile cap, type of piles and different types of soil which affect the behaviour of pile cap foundation is carried out by using Finite Element Software ANSYS. For understanding the settlement behaviour of pile cap foundation, parametric studies have been carried out in four types of clay by varying pile cap dimensions with two types of piles namely normal and under-reamed piles for different group of piles. Furthermore, the analysis results of settlement and stress values for the pile cap with normal and under-reamed piles are compared. From the study it can be concluded that settlement values of pile cap with under-reamed pile are less than the settlements of pile cap with normal pile. It means that the ultimate load bearing capacity of pile cap with under-reamed piles are greater than the pile cap with normal piles.

플라이휠 에너지 저장장치를 위한 저 전력소모 하이브리드 마그네틱 베어링의 설계 (Design of Low Power Consumption Hybrid Magnetic Bearing for Flywheel Energy Storage System)

  • 김우연;이종민;배용채;김승종
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.717-726
    • /
    • 2010
  • For the application into a 1 kWh flywheel energy storage system(FESS), this paper presents the design scheme of radial and axial hybrid magnetic bearings which use bias fluxes generated by permanent magnets. In particular, the axial hybrid magnetic bearing is newly proposed in this paper, in which a permanent magnet is arranged in axial direction so that it can support the rotor weight as well as provide a bias flux for axial magnetic bearing. Such hybrid magnetic bearings consume very low power, compared with conventional electromagnetic bearings. In this paper, to stably support a 140 kg flywheel rotor without contact, design process is explained in detail, and magnetic circuit analysis and three-dimensional finite element analysis are carried out to determine the design parameters and predict the performance of the magnetic bearings.

볼 베어링의 결함검출을 위한 Adaptive Line Enhancer의 적용 (Application of Adaptive Line Enhancer for Detection of Ball Bearing Defects)

  • 김영태;최만용;김기복;박해원;박정학;김종억;류준
    • 한국공작기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.96-103
    • /
    • 2005
  • The early detection of the bearing defects in rotating machinery is very important since the critical failure of bearing causes a machinery shutdown. However it is not easy to detect the vibration signal caused by the initial defects of bearing because of the high level of random noise. A signal processing technique, called the adaptive line enhancer(ALE) as one of adaptive filter, is used in this study. This technique is to eliminate random noise with little a prior knowledge of the noise and signal characteristics. Also we propose the optimal methods fir selecting the three main ALE parameters such as correlation length filter order and adaptation constant. Vibration signals f3r three abnormal bearings, including inner and outer raceways and ball defects, were acquired by Anderon(angular derivative of radius on) meter. The experimental results showed that ALE is very useful f3r detecting the bearing defective signals masked by random noise.

범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구 (A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps)

  • 이용복;박동진;김창호
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

직선베어링 안내면의 운동오차 해석 (Analysis of the Motion Errors in Linear Motion Guide)

  • 김경호;박천홍;이후상;김승우
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.139-148
    • /
    • 2002
  • Motion errors of linear motion guideway are analyzed theoretically in this paper. For the analysis, an new algorithm predicting motion errors of bearing and guideway is proposed using the Hertz's elastic deformation theory. Accuracy averaging effect can be calculated quantitatively by analyzing relationship between motion errors of guideway and spatial frequency of rail form error. Influences of design parameters on the motion errors including the number of balls, preload, ball diameter, bearing length and the number of bearings are analyzed. As it is difficult to measure the rail form error, experimental results are compared with results analyzed by the equivalent analysis method which evaluate the motion errors of guideway using the measured errors of bearing. From the experimental results, it is confirmed that the proposed analysis method it effective lo analyze the motion errors of linear motion bearing and guideway.

극한해석 상계법을 이용한 편심하중하의 기초 지지력 산정 (Computation of Ultimate Bearing Capacity of Eccentrically Loaded Footing By Upper Bound of Limit Analysis Method)

  • 권오균;김명모
    • 대한토목학회논문집
    • /
    • 제12권1호
    • /
    • pp.187-196
    • /
    • 1992
  • 본 연구에서는 편심 하중을 받는 기초의 지지력을 극한해석 상계법을 이용하여 산정하였다. 편심 하중이 작용하는 기초의 지지력을 산정하는 기존의 해석방법으로는 극한평형법을 이용한 Meyerhof 방법과 Saran 방법 등이 있으나, 극한해석법을 이용하여 해석하는 경우는 없다. 이에 본 연구에서는 극한해석 상계법을 이용하여 편심하중이 작용하는 기초의 지지력을 산정하였다. 극한해석 상계법으로 해석하는 경우, 적용하는 파괴메카니즘에 따라 그 결과가 달라지므로, 본 연구에서는 기존의 파괴메카니즘을 속도장 조건에 맞게 변형시킨 후, 극한해석 상계법을 적용하여 그 결과들을 상호 비교하였다. 그리고, 편심하중을 받는 기초 구조물의 지지력에 영향을 미치는 요소들을 연구하기 위하여 흙의 내부마찰각, 기초 바닥면의 마찰각, 편심량, 그리고 상재하중 등을 변화시켜 각 요소들이 기초의 지지력에 미치는 영향을 연구하였다.

  • PDF