• Title/Summary/Keyword: bearing only measurement

Search Result 46, Processing Time 0.021 seconds

The Effect of Shoe Lift of the Paretic Limb on Dynamic Weight Bearing in Hemiplegics (편마비 환자의 신발 높이 조절이 동적체중부하율에 미치는 영향)

  • Yoon, Jung-Gyu;Kim, Byung-Wook
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.1073-1080
    • /
    • 2001
  • The purpose of this study was to determine the effect of lift to the shoe of the affected limb on gait patterns in subjects with hemiplegia. The subjects of this study were 18 post-stroke hemiplegics. For the study, insole of the paretic side was lifted 10 mm higher, and duration of dynamic weight bearing was measured. before and after the lift application. For the measurement of carry-over effect of lift, we got data of there three items prior to and 3 weeks after lift application and 3 days after removal of the lift. Dynamic weight bearing was significantly decreased in heel contact and footflat phases only when just after application of the lift, without any change after 3 weeks application. In heel-off phase, dynamic weight bearing did not show any significant difference between before and just after application of lift whereas significantly decreased after 3 weeks application. According to this study, lift applied to the shoe of the paretic limb was not significantly effect in inducing dynamic weight bearing, but changed a dynamic weight bearing.

  • PDF

The built-in sensor bearing to measure shaft behavior of compressor for air-conditioning (공조용 압축기 축 거동 측정용 베어링 내장형 센서)

  • 김지운;안형준;김지영;한동철;윤정호;황인수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.230-236
    • /
    • 2001
  • We developed a built-in sensor bearing to measure the rotor motion of a rolling piston type compressor for the air conditioner. Because of needs for the high efficiency and long life span of compressor, and the usage of alternative refrigerants, the operating condition of the compressor becomes more severe. The accurate measurement of the rotor motion of the compressor can contribute greatly to the design and analysis of the hydrodynamic bearing. However, it is difficult to measure accurately the shaft behavior of small compressor because of the small space for the sensor mount, high temperature and pressure of compressor, oil mixed with refrigerant, and electromagnetic noise of the motor. To overcome these difficulties, we develop the cylindrical capacitive sensor that is built in the hydrodynamic bearing and calibrate the built-in sensor bearing indirectly through measuring the oil relative permittivity. We measured the rotor motion as well as suction and discharge pressures in various conditions. The several experimental results show that the developed built-in sensor bearing can measure the rotor motion not only in steady state but also in transient state.

  • PDF

Torque Measurement System of Piezoelectric Ultrasonic Motor (압전 초음파 전동기의 토크측정 시스템)

  • Kim, Young-Gyoon;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1780-1782
    • /
    • 1999
  • The ultrasonic motor used here is the windmill type ultrasonic motor operated by single-phase AC source. A metal-ceramic composite component was used as the stator element to generate ultrasonic vibrations. The windmill type ultrasonic motors has only three components; a stator element of two wind-mill shape slotted metal endcaps, a rotor and a bearing. In this paper we proposed a system for torque measurement of piezoelectric ultrasonic motor.

  • PDF

Long-Term Measurement under the Moving train at the Test Reinforced Roadbed Site in Railway (철도강화노반 시험부설구간에서의 열차 주행시 장기거동 계측)

  • 황선근;신민호;이성혁;최찬용;이시한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.223-230
    • /
    • 2001
  • Nine different types of the reinforced railroad roadbeds which . are located in between Suwon-Chunan station of Kyongbu line were constructed in order to increase the bearing capacity of railroad roadbed and to improve the ridability as a part of speed-up project of conventional railroad systems. Each three sections were composed of weathered granite soil, crushed stone and furnace slag(HMS25), and fully instrumented with earth pressure cells, settlement plates and geophones to monitor the behavior of roadbeds under actual train loads. Field measurement has continued since October 31, 2000 and presently with rather longer measurement interval. The measurement data such as settlement, earth pressure and vibration levels are currently under analysis process. In this paper, only cumulative measurement data of railroad roadbeds were introduced. In the near future, comprehensive measurement data and result of analysis will be presented and design technique for the reinforced railroad roadbed will be proposed as a final product of this study.

  • PDF

Dynamic Characteristics of a High Speed Centrifugal Compressor using Foil Bearings (포일베어링을 사용한 고속 원심압축기의 동특성)

  • Kwon, Kye-Si;Ji, Yoo-Chul;Lee, Sang-Wook;Choi, Moon-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1450-1454
    • /
    • 2000
  • In order to understand dynamic characteristics of centrifugal compressor supported foil bearing, of which normal operating speed is about 20,000 ${\sim}$ 50,000 rpm, the rotor whirl is measured using gap sensors. Not only critical speeds of rotor system but also stability of rotor whirl, which are main concerns of the turbo compressor system, are measured using gap sensors by varying the rotating speed the rotor. The stiffness characteristics of bearing system is shown to be almost invariant according to speed variation by the measurement of eccentricity. In addition, from the directional power spectral density function of the measured vibration signal, the isotropy stiffness characteristics of foil bearing system is discussed.

  • PDF

Vibration Control of Condensate Motors in Nuclear Powerplant By Bearing Redesign (베어링 재설계에 의한 원전 COP motor의 진동 제어)

  • Lim, Do-Hyeong;Kim, Won-Hyun;Lee, Jong-Moon;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the summary of control of abnormal vibration found in the COP motors of a nuclear power plant. All six identical units of COP pump-motor assemblies showed unstable vibration pattern of which one or two showed higher vibration enough to exceed the allowable level from the installation stage. Many trials of test, measurement, overhaul and replacement had been repeated to investigate and solve the problem but only to reach unsatisfactory settlement. Recently several times of site tests are made and followed by significant diagnostic actions in which the authors group participated. It was found that the coupled shafting system of motor and pump is in close resonance with the $1^{st}$ shaft rotating speed. Redesign of topside motor bearing clearance is made to increase bearing stiffness and hence to avoid the resonance which consequently led to reduce the troubled vibration to allowable and stable status.

  • PDF

The Effect of Shoe Lift of the Paretic Limb on Gait Patterns in Hemiplegics (환측 신발 높이기가 편마비 환자의 보행 특성에 미치는 영향)

  • Yoon, Jung-Gyu;Park, Jeong-Mee;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.83-96
    • /
    • 2002
  • The purpose of this study was to determine the effect of lift to the shoe of the affected limb on gait patterns in subjects with hemiplegia. The subjects of this study were 18 post-stroke hemiplegics. For the study, insole of the paretic side was lifted 10mm higher, and duration of static weight bearing, dynamic weight bearing and stance phase were measured from one cycle of the gait, before and after the lift application. For the measurement of carry-over effect of lift, we got data of those three items prior to and 3 weeks after lift application and 3 days after removal of the lift. Static weight bearing was significantly increased both just after and continuous application of lift for 3 weeks than before. Dynamic weight bearing was significantly decreased in heel contact and footflat phases only when just after application of the lift, without any change after 3 weeks application. In heel-off phase, dynamic weight bearing did not show any significant difference between before and just after application of lift whereas significantly decreased after 3 weeks application. Duration of stance phase was not changed among anytime of application. According to this study, lift applied to the shoe of the peretic limb was effective in inducing static weight bearing in the paretic limb, but did not significantly effect dynamic weight bearing on gait patterns. This study suggests that symmetry, induced by shoe lift applied to the paretic limb, could help correct abnormal posture that would be caused in standing and prevent development of abnormal muscle tone in subjects with hemiplegia caused by unilateral stroke.

  • PDF

Evaluation of the Effect of Initial Condition of the Granular Assembly on the Bearing Capacity of the Shallow Foundation using Photoelastic Measurement Technique (광탄성 측정 기법을 이용한 입상체 초기 조건의 얕은 기초 지지력에 대한 영향 평가)

  • Shin, Sang-Young;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.471-491
    • /
    • 2016
  • Traditional limit equilibrium method needs an assumption of the failure surface to calculate the bearing capapcity of the shallow foundation. From the viewpoint of the mechanics of granular materials, however, the failure of the soil mass is initated by the local buckling of the contact force chains. In this study we observed the directional distribution of the contact force chains in the granular assembly stacked by model particles subjected to the model shallow foundation during loading. Two sets of the assemblies with a regular structure and initially local imperfection were prepared for tests. Existence of the initial local imperfection has a significant effect on the directional distribution of the contact force chains. The bearing capacity of the assembly with local imperfection is only 67% the capacity of the assembly with the regular structure.

Static Stiffness Tuning Method of Rotational Joint of Machining Center (머시닝센터 회전 결합부의 정강성 Tuning 기법)

  • Kim, Yang-Jin;Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A method has been developed to tune the static stiffness at a rotation joint considering the whole machine tool system by interactive use of finite element method and experiment. This paper describes the procedure of this method and shows the results. The method uses the static experiment on measurement model which is set-up so that the effects of uncertain factors can be excluded. For FEM simulation, the rotation joint model is simplified using only spindle, bearing and spring. At the rotation joint, the damping coefficient is ignored, The spindle and bearing is connected by only spring. By static experiment, 500 N is forced to the front and behind portion of spindle and the deformation is measured by capacitive sensor. The deformation by FEM simulation is extracted with changing the static stiffness from the initial static stiffness considering only rotation joint. The tuning static stiffness is obtained by exploring the static stiffness directly trusting the deformation from the static experiment. Finally, the general tuning method of the static stiffness of machine tool joint is proposed using the force stream and the modal analysis of machine tool.

Effects of Robot-Assisted Arm Training on Muscle Activity of Arm and Weight Bearing in Stroke Patients (로봇-보조 팔 훈련이 뇌졸중 환자의 팔에 근활성도와 체중지지에 미치는 영향)

  • Yang, Dae-jung;Lee, Yong-seon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.71-80
    • /
    • 2022
  • Background: This study investigated the effect of robot-assisted arm training on muscle activity of arm and weight bearing in stroke patients. Methods: The study subjects were selected 20 stroke patients who met the selection criteria. 10 people in the robot-assisted arm training group and 10 people in the task-oriented arm training group were randomly assigned. The experimental group performed robot-assisted arm training, and the control group performed task-oriented arm training for 6 weeks, 5 days a week, 30 minutes a day. The measurement tools included surface electromyography and smart insole system. Data were analyzed using independent sample t-test and the paired sample t-test. Results: Comparing the muscle activity of arm within the group, the experimental group and the control group showed significant differences in muscle activity in the biceps brachii, triceps brachii, anterior deltoid, upper trapezius, middle trapezius, and lower trapezius. Comparing the muscle activity of arms between the groups, the experimental group showed significant difference in all muscle activity of arm compared to the control group. Comparing the weight bearing within the groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings and there were significant differences in anterior and posterior weight bearing. The control group showed significant difference only in the non-affected side weight bearing. Comparing the weight bearings between groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings compared to the control group. Conclusion: This study confirmed that robot-assisted arm training applied to stroke patients for 6 weeks significantly improved muscle activity of arm and weight bearing. Based on these results, it is considered that robot-assisted arm training can be a useful treatment in clinical practice to improve the kinematic variables in chronic stroke patients.