• Title/Summary/Keyword: bearing mechanism

Search Result 465, Processing Time 0.026 seconds

Tribological characteristics of sputtered MoS$_2$films with Magnetron Sputtering Method in High Vacuum (Magnetron Sputtering법에 의해 증착한 MoS$_2$ 박막의 고진공하에서의 트라이볼로지적 특성)

  • 안찬욱;김석삼;이상로
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.406-413
    • /
    • 2000
  • The friction and wear behaviors of Magnetron Sputtered MoS$_2$films were investigated by using a pin on disk type tester which was designed and manufactured for this experiment. The experiment was conducted by using silicon nitride (Si$_3$N$_4$) as a pin material and Magnetron Sputtered MoS$_2$on bearing steel (STB2) as a disk material, under operating conditions that include different surface roughness (Polishing specimen, Grinding specimen)(2types), linear sliding velocities in the range of 22, 44, 66mm/sec (3types), normal loads vary from 9.8N, 19.6N, 29.4N(3types), corresponding to contact pressures of 1.9∼2.7GPa and atmospheric conditions of high vacuum( 1.3${\times}$10$\^$-4/Pa), medium vacuum( 1.3${\times}$10$\^$-l/Pa), ambient air(10$\^$5/Pa)(3types). We investigated fracture mechanism in magnetron sputtered MoS$_2$films with Magnetron Sputtering method in each experiment.

  • PDF

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Percutaneous osteoplasty for painful bony lesions: a technical survey

  • Kim, Won-Sung;Kim, Kyung-Hoon
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.375-393
    • /
    • 2021
  • Percutaneous osteoplasty (POP) is defined as the injection of bone cement into various painful bony lesions, refractory to conventional therapy, as an extended technique of percutaneous vertebroplasty (PVP). POP can be applied to benign osteochondral lesions and malignant metastatic lesions throughout the whole skeleton, whereas PVP is restricted to the vertebral body. Common spinal metastases occur in the thoracic (70%), lumbosacral (20%), and cervical (10%) vertebrae, in order of frequency. Extraspinal metastases into the ribs, scapulae, sternum, and humeral head commonly originate from lung and breast cancers; extraspinal metastases into the pelvis and femoral head come from prostate, urinary bladder, colon, and uterine cervical cancers. Pain is aggravated in the dependent (or weight bearing) position, or during movement (or respiration). The tenderness and imaging diagnosis should match. The supposed mechanism of pain relief in POP is the augmentation of damaged bones, thermal and chemical ablation of the nociceptive nerves, and local inhibition of tumor invasion. Adjacent (facet) joint injections may be needed prior to POP (PVP). The length and thickness of the applied needle should be chosen according to the targeted bone. Bone cement is also selected by its osteoconduction, osteoinduction, and osteogenesis. Needle route should be chosen as a shortcut to reach the target bony lesions, without damage to the nerves and vessels. POP is a promising minimally invasive procedure for immediate pain relief. This review provides a technical survey for POPs in painful bony lesions.

Analysis of seismic behaviors of digging well foundation with prefabricated roots

  • Wang, Yi;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Gao, Jianqiang;Lu, Jinhua;Zhang, Yongliang
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.641-652
    • /
    • 2021
  • Digging well foundation has been widely used in railway bridges due to its good economy and reliability. In other instances, bridges with digging well foundation still have damage risks during earthquakes. In this study, a new type of digging well foundation with prefabricated roots was proposed to reduce earthquake damage of these bridges. Quasi-static tests were conducted to investigate the failure mechanism of the root digging well foundation, and then to analyze seismic behaviors of the new type well foundation. The testing results indicated that these prefabricated roots could effectively limit the rotation and uplift of the digging well foundation and increase the lateral bearing capacity of the digging well foundation. The elastic critical load and ultimate load can be increased by 69% and 36% if prefabricated roots were added in the digging well foundation. The prefabricated roots drived more soil around the foundation to participate in working, the stiffness of the bridge pier with root digging well foundation was improved. Moreover, the root participation could improve the energy dissipation capacity of soil-foundation-pier interaction system. The conclusions obtained in this paper had important guiding significance for the popularization and application of the digging well foundation with prefabricated roots in earthquake-prone zones.

A Pumilio Activity Sensor Reveals Bag-of-Marbles Inhibition of Pum Activity in the Drosophila Ovary

  • Wijeong Jang;Changsoo Kim
    • Development and Reproduction
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 2023
  • Pumilio (Pum) is an RNA-binding protein and translational repressor important to diverse biological processes. In the Drosophila ovary, Pum is expressed in female germline stem cells (GSCs), wherein it acts as an intrinsic stem cell maintenance factor via repressing target mRNAs that are as yet mostly unknown. Pum recognizes the Pum binding sequence (PBS) in the mRNA 3'UTR through its C-terminus Puf domain. Translational repression is mediated through its N-terminal domain, but the molecular mechanism remains largely unknown. We previously showed that Bag-of-marbles, a critical differentiation-promoting factor of female GSCs, physically interacts with the N-terminus of Pum. We further showed that this interaction is critical to Bam inhibition of Pum repressive action in cultured cells, but the physiological relevance was not addressed. Here we design an in vivo GFP translational reporter bearing the PBS in its 3'UTR and show that GFP expression is reduced in cells wherein Pum is known to be active. Furthermore, we demonstrate in pum mutant ovary that this GFP repression requires Pum, and also that the sensor faithfully monitors Pum activity. Finally, we show that forced expression of Bam inhibits Pum-mediated repression, validating that Bam inhibits Pum activity in vivo.

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.5-20
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics play the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore pressure coupled finite element modeling of NATM tunneling.

Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements (아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구)

  • Lee, Gayoon;Lee, Dong-Young;Park, Minsoo;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

Experimental and analytical study of a new seismic isolation device under a column

  • Benshuai Liang;Guangtai Zhang;Mingyang Wang;Jinpeng Zhang;Jianhu Wang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.415-428
    • /
    • 2023
  • Low-cost techniques with seismic isolation performance and excellent resilience need to be explored in the case of rural low-rise buildings because of the limited buying power of rural residents. As an inexpensive and eco-friendly isolation bearing, scrap tire pads (STPs) have the issue of poor resilience. Thus, a seismic isolation system under a column (SISC) integrated with STP needs to be designed for the seismic protection of low-rise rural buildings. The SISC, which is based on a simple exterior design, maintains excellent seismic performance, while the mechanical behavior of the internal STP provides elastic resilience. The horizontal behaviors of the SISC are studied through load tests, and its mechanical properties and the intrinsic mechanism of the reset ability are discussed. Results indicate that the average residual displacement ratio was 24.59%, and the reset capability was enhanced. Comparative experimental and finite element analysis results also show that the load-displacement relationship of the SISC was essentially consistent. The dynamic characteristics of isolated and fixed-base buildings were compared by numerical assessment of the response control effects, and the SISC was found to have great seismic isolation performance. SISC can be used as a low-cost base isolation device for rural buildings in developing countries.

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

Resveratrol promotes mitochondrial energy metabolism in exercise-induced fatigued rats

  • Xujia Lou;Yulong Hu;Rong Ruan;Qiguan Jin
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.660-669
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exercise-induced fatigue. MATERIALS/METHODS: Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. RESULTS: Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state. Resveratrol supplementation could improve the activities of Ca2+-Mg2+-ATPase, Na+-K+-ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. CONCLUSIONS: Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolism-related enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.