• Title/Summary/Keyword: bearing flaking

Search Result 8, Processing Time 0.022 seconds

Detection and Classification of Bearing Flaking Defects by Using Kullback Discrimination Information (KDI)

  • Kim, Tae-Gu;Takabumi Fukuda;Hisaji Shimizu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • Kullback Discrimination Information (KDI) is one of the pattern recognition methods. KDI defined as a measure of the mutual dissimilarity computed between two time series was studied for detection and classification of bearing flaking on outer-race and inner-races. To model the damages, the bearings in normal condition, outer-race flaking condition and inner-races flaking condition were provided. The vibration sensor was attached by the bearing housing. This produced the total 25 pieces of data each condition, and we chose the standard data and measure of distance between standard and tested data. It is difficult to detect the flaking because similar pulses come out when balls pass the defection point. The detection and classification method for inner and outer races are defected by KDI and nearest neighbor classification rule is proposed and its high performance is also shown.

Development of Diagnosis System for Hub Bearing Fault in Driving Vehicle (차량 주행 상태에서 허브 베어링 이상을 진단할 수 있는 장치 개발)

  • Im, Jong-Soon;Park, Ji-Hun;Kim, Jin-Yong;Yun, Han-Soo;Cho, Yong-Bum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • In this paper, we propose effective diagnosis algorithm for hub bearing fault in driving vehicle using acceleration signal and wheel speed signal measured in hub bearing unit or knuckle. This algorithm consists of differential, envelope and power spectrum method. We developed diagnosis system for realizing proposed algorithm. This system consists of input device including acceleration sensor and wheel speed sensor, calculation device using Digital Signal Processor (DSP) and display device using Personal Digital Assistant (PDA). Using this diagnosis system, a driver can see hub bearing fault(flaking) from the vibration in driving vehicle. With early repairing, he can keep good ride feeling and prevent accident of vehicle resulting from hub bearing fault.

Loading Test Results of Wind Turbine Pitch/Yaw Bearing (풍력발전기용 피치/요 베어링의 하중 시험 결과)

  • Nam, Ju-Seok;Kim, Heung-Sub;Lee, Young-Soo;Han, Jeong-Woo
    • Journal of Wind Energy
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The loading test of wind turbine pitch and yaw bearings have been conducted using special test rig designed for the test of large slewing bearings. Test type was fatigue test that applied fatigue load to each bearing and followed the defined test process. Measurement data during test were rotational torque and raceway temperature, and inspected key components by disassembling the bearing after all test finished. As a results, the raceway temperature during test did not exceed the operational temperature range of lubricant and rotational torque was reduced as the bearing's rotational cycle increased. In the inspection of key components, some plastic deformation and flaking were detected at some raceway sections while other components such as ball, spacer and seal remain indefective conditions.

Life Analysis of Ball Bearings by Accelerated Life Test (가속수명시험을 이용한 볼 베어링 수명분석)

  • 김형의;이윤표;유영철
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.335-342
    • /
    • 2004
  • The failures such as flaking, wear, crack and seizing caused by the high contact pressure accompanied with sliding motion between inner or outer ring and ball are potential failures of ball bearing. In this research, we have qualitatively selected the efficient test items through the analysis of the life and potential failures of ball bearing. The bearing's failures are related closely to the whole system in using the bearing. So, the bearing itself requires an estimation of life in order to opreate the system safely. We have tested ten ball bearings. Our research has applied both radial and axial direction force of maximum torque conditions simultaneously for the accelerated life testing. The result is established by employing the weibull plot and compared the predicted life of ball bearing to the experimental result.

  • PDF

A Study on the Failure Mode of the Rolling Bearing with Defective Balls

  • Hyun, J.S.;Park, T.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.305-306
    • /
    • 2002
  • In this paper, the endurance life of the rolling bearings with defective balls and their failure (flaking) phenomena are presented. It was found that the lives of ball bearings with defective balls were shorter than that of calculated L10 life as well as that of normal bearings in spite of the using standard bearing components. Although the bearings were assembled with defective balls, whereas the other parts were qualified new ones, the main failures were occurred on the inner ring raceways. Moreover, the failures were on the center of the groove curvature and the severity of failure is similar to the order of initial defect depth of the balls. These shows that the defects on the bearings can affect the life of tribologically contacted mating parts.

  • PDF

A Behavior of Rolling Contact Fatigue on Retained Austenite in High-Carbon Chromium Bearing Steel (고탄소 크롬 베어링 강에서의 잔류 오스테나이트 변화에 따른 회전접촉 피로거동)

  • Jin, Jai Koan;Kim, Dong Keon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.190-198
    • /
    • 1994
  • In order to study the effect of retained austenite on rolling contact fatigue in high-carbon chromium bearing steel, retained austenite was controlled by only tempering temperature, individually 200, 220 and $240^{\circ}C$. Among various microstructural alteration during rolling contact fatigue test, plate-like carbide most related to the flaking at sub-surface of contact pressure. The plate-like carbides formed during rolling contact fatigue test decrease with increasing tempering temperature, and fatigue life is much more improved. The retained austenite was decreased with the tempering temperature, and that decreased plate-like carbide formation. Therefore fatigue life is much more improved with decreasing retained austenite.

  • PDF

Development of Diagnosis Technique for Converter Bearings by Using Acoustic Emission (음향방출기법을 이용한 전로베어링 안전진단 기술개발)

  • 박경조
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.6-15
    • /
    • 2003
  • A method is presented for diagnosing the converter bearings by using acoustic emission. The flaking mechanism causing the large-scale bearing for furnace to flaw is investigated and a possibility of defect is verified by Finite Element method. he diagnosis logic is proposed fir detecting the flaw of a non-continuous rotating machine. It is proved that the acoustic emission energy can be used as a representative parameter for an acoustic event. Applying the method to the tilting bearings for steel mill in operation, the effectiveness of this logic is evaluated. It is shown that AE signal is generated only when the bearing is tilting, and the trend analysis can be focused upon this process.

An Effect of Load on Surface Roughness on Surface Rolling of Ground Mild Steel (연삭가공된 강재의 표면 Rolling시 가압력이 표면 조도에 미치는 영향)

  • Kim, Hee-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.1
    • /
    • pp.31-41
    • /
    • 1987
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness with reduction of diameter and hardness. In this study, three NACHI 6000 ZZ bearing were used for surface rolling tool on a mild steel. The following results have been obtained with the mild steel. 1) The load is major factor in getting fine surface roughness of roller fininshing after grinding. The optimal surface roughness of SS40 steel can be obtained at the contact pressure of $210kgf/cm^2$. But, Better surface roughness can not be expected, Due to flaking phenomena at more than 300 kgf/cm of contact pressure. 2) At the contact pressure range of $200kgf/cm^2{\sim}210kgf/cm^2$ for optimal surface roughness, The surface hardness increased to Hv 200~Hv 240 from Hv 125 before surface rolling. 3) Within the diameter variation of $13{\mu}m$ the surface roughness and the surface hardness were increased, but out of variation of $14{\mu}m$. The surface roughness become worse and the surface hardness was increased.

  • PDF