• Title/Summary/Keyword: bearing fault diagnosis

Search Result 83, Processing Time 0.029 seconds

Analysis of the Bearing Fault Effect on the Stator Current of an AC Induction Motor (유도전동기의 고정자 전류에 미치는 베어링 고장 영향 분석)

  • Kim, Jae-Hoon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.635-640
    • /
    • 2014
  • Detection and diagnosis of incipient bearing fault in an induction motor is important for the prevention of serious motor failure. This paper presents an analysis of the effect of a faulty bearing on the stator current of an induction motor. A bearing fault leads to torque oscillations which result in phase modulation of the stator current. Since the torque oscillations cause specific frequency components at the stator current spectrum to rise sharply, the bearing fault can be detected by checking out the faultrelated frequency. In this paper, a mathematical model of the load torque oscillation caused by a bearing fault is presented. The proposed model can be used to analyze the physical phenomenon of a bearing fault in an induction motor. In order to represent the bearing fault effect, the proposed model is combined with an existing model of vector-controlled induction motors. A set of simulation results demonstrate the effectiveness of the proposed model and represent that bearing fault detection using a stator current is useful for vector-controlled induction motors.

Study on NDT Fault Diagnosis of the Ball Bearing under Stage of Abrasion by Infrared Thermography (마모 단계의 볼 베어링에 대한 적외선 열화상 비파괴 결함 진단 연구)

  • Seo, Jin-Ju;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • For fault detection about the abrasion stage of rotational machineries under the dynamic loading conditions unlike the traditional diagnosis method used in the past decade, the infrared thermographic method with its distinctive advantages in non-contact, non-destructive, and visible aspects is proposed. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiments were conducted as an alternative way to proceeding the traditional fault monitoring on spectrum analyzer. As results, the thermographic experiment was compared with the traditional vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results obtained as NDT, the temperature characteristics and abnormal fault detections of the ball bearing according to the abrasion stage were analyzed.

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Fault Diagnosis of Ball Bearing using Correlation Dimension (상관차원에 의한 볼베어링 고장진단)

  • 김진수;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.979-984
    • /
    • 2004
  • The ball bearing having faults generally shows, nonlinear vibration characteristics. For the effective method of fault diagnosis on bail bearing, non-linear diagnostic methods can be used. In this paper, the correlation dimension analysis based on nonlinear timeseries was applied to diagnose the faults of ball bearing. The correlation dimension analysis shows some Intrinsic information of underlying dynamical systems, and clear the classification of the fault of ball bearing.

  • PDF

An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions (MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법)

  • Seo, Yangjin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.179-188
    • /
    • 2022
  • There have been many successful researches on a bearing fault diagnosis based on Deep Learning, but there is still a critical issue of the data distribution difference between training data and test data from their different working conditions causing performance degradation in applying those methods to the machines in the field. As a solution, a data adaptation method has been proposed and showed a good result, but each and every approach is strictly limited to a specific applying scenario or presupposition, which makes it still difficult to be used as a real-world application. Therefore, in this study, we have proposed a method that, using a data transformation with MFCCs and a simple CNN architecture, can perform a robust diagnosis on a target domain data without an additional learning or tuning on the model generated from a source domain data and conducted an experiment and analysis on the proposed method with the CWRU bearing dataset, which is one of the representative datasests for bearing fault diagnosis. The experimental results showed that our method achieved an equal performance to those of transfer learning based methods and a better performance by at least 15% compared to that of an input transformation based baseline method.

Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines

  • Shen, Changqing;Wang, Dong;Liu, Yongbin;Kong, Fanrang;Tse, Peter W.
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.453-471
    • /
    • 2014
  • The fault diagnosis of rolling element bearings has drawn considerable research attention in recent years because these fundamental elements frequently suffer failures that could result in unexpected machine breakdowns. Artificial intelligence algorithms such as artificial neural networks (ANNs) and support vector machines (SVMs) have been widely investigated to identify various faults. However, as the useful life of a bearing deteriorates, identifying early bearing faults and evaluating their sizes of development are necessary for timely maintenance actions to prevent accidents. This study proposes a new two-layer structure consisting of support vector regression machines (SVRMs) to recognize bearing fault patterns and track the fault sizes. The statistical parameters used to track the fault evolutions are first extracted to condense original vibration signals into a few compact features. The extracted features are then used to train the proposed two-layer SVRMs structure. Once these parameters of the proposed two-layer SVRMs structure are determined, the features extracted from other vibration signals can be used to predict the unknown bearing health conditions. The effectiveness of the proposed method is validated by experimental datasets collected from a test rig. The results demonstrate that the proposed method is highly accurate in differentiating between fault patterns and determining their fault severities. Further, comparisons are performed to show that the proposed method is better than some existing methods.

Dual-loss CNN: A separability-enhanced network for current-based fault diagnosis of rolling bearings

  • Lingli Cui;Gang Wang;Dongdong Liu;Jiawei Xiang;Huaqing Wang
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.253-262
    • /
    • 2024
  • Current-based mechanical fault diagnosis is more convenient and low cost since additional sensors are not required. However, it is still challenging to achieve this goal due to the weak fault information in current signals. In this paper, a dual-loss convolutional neural network (DLCNN) is proposed to implement the intelligent bearing fault diagnosis via current signals. First, a novel similarity loss (SimL) function is developed, which is expected to maximize the intra-class similarity and minimize the inter-class similarity in the model optimization operation. In the loss function, a weight parameter is further introduced to achieve a balance and leverage the performance of SimL function. Second, the DLCNN model is constructed using the presented SimL and the cross-entropy loss. Finally, the two-phase current signals are fused and then fed into the DLCNN to provide more fault information. The proposed DLCNN is tested by experiment data, and the results confirm that the DLCNN achieves higher accuracy compared to the conventional CNN. Meanwhile, the feature visualization presents that the samples of different classes are separated well.

Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets (웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단)

  • Tuan, Do Van;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.726-735
    • /
    • 2009
  • In this paper, we propose an approach to signal model-based fault detection and diagnosis system for induction motors. The current fault detection techniques used in the industry are limit checking techniques, which are simple but cannot predict the types of faults and the initiation of the faults. The system consists of two consecutive processes: fault detection process and fault diagnosis process. In the fault detection process, the system extracts the significant features from sound signals using combination of variance, cross-correlation and wavelet. Consequently, the pattern classification technique is applied to the fault diagnosis process to recognize the system faults based on faulty symptoms. The sounds generated from different kinds of typical motor's faults such as motor unbalance, bearing misalignment and bearing loose are examined. We propose two approaches for fault detection and diagnosis system that are waveletand-variance-based and wavelet-and-crosscorrelation-based approaches. The results of our experiment show more than 95 and 78 percent accuracy for fault classification, respectively.

Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions (동적 하중조건에서 볼 베어링의 고장 탐지에 대한 적외선 열화상 진단메커니즘 고찰)

  • Seo, Jin-Ju;Yoon, Han-Vit;Kim, Dong-Yeon;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.134-138
    • /
    • 2011
  • Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly.

Quantitative NDE Thermography for Fault Diagnosis of Ball Bearings with Micro-Foreign Substances (미세 이물질이 혼입된 볼베어링의 고장 진단을 위한 정량화 열화상에 관한 비파괴평가 연구)

  • Hong, Dongpyo;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, a non-destructive evaluation (NDE) mothod is proposed for ball bearings contaminated with micro foreign substances, which were inserted into a ball bearing to create a defective specimen. The non-contact quantitative infrared thermographic technique was applied for NDE condition monitoring. Passive thermographic experiments were conducted to perform early fault diagnosis, for bearings operated at optimized torque status under a dynamic load condition. The temperature profiles for normal and defective specimens were quantitatively compared, and the thermographic data analyzed. Based on the NDE results, the temperature characteristics and abnormal fault detection of the ball bearing were quantitatively analyzed according to the rise in temperature.