• 제목/요약/키워드: bearing condition monitoring

검색결과 68건 처리시간 0.026초

수차발전기 상태진단시스템을 이용한 예지보전체계 (Predictive Maintenance System using Condition Monitoring System of Hydro-turbine Generator)

  • 김응태;고성호;김현;정용채;최성필
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2006
  • The purpose of this study is to explain the importance of Vibration Monitoring Device by introducing an example of Predictive Maintenance System using Condition Monitoring System of Hydro-turbine generator. Confirming vibration of generation equipment is commissioning procedure during equipment completion for checking guaranteed items. Data from Generator output range are used to determine output band to continue the performance of equipment. The Vibration Monitoring System is not absolute method of maintenance, but if it is used well with expert, it will be visible, data-analyzed, scientific maintenance more than others. And also, Condition Monitoring System is very important for remote controlled small hydro-power plant although most of it is installed in Large hydro-power plant.

  • PDF

수차발전기 상태진단시스템을 이용한 예지보전체계 사례 (Report on Predictive Maintenance System using Condition Monitoring System of Hydro-turbine Generator)

  • 고성호;정용채;최성필;곽영균;한승열
    • 한국유체기계학회 논문집
    • /
    • 제13권1호
    • /
    • pp.29-34
    • /
    • 2010
  • The purpose of this study is to explain the importance of Vibration Monitoring Device by introducing an example of Predictive Maintenance System using Condition Monitoring System of Hydro-turbine generator. Confirming vibration of generation equipment is commissioning procedure during equipment completion for checking guaranteed items. Data from Generator output range are used to determine output band to continue the performance of equipment. The Vibration Monitoring System is not absolute method of maintenance, but if it is used well with expert, it will be visible, data-analyzed, scientific maintenance more than others. And also, Condition Monitoring System is very important for remote controlled small hydro-power plant although most of it is installed in Large hydro-power plant.

축방향 하중을 받는 앵귤러 콘택트 볼베오링의 수명특성에 관한 실험적 연구

  • 황평;권성인
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제23회 학술대회
    • /
    • pp.53-59
    • /
    • 1996
  • The new trends in main spindle design of Machining Center are focused on high-speed, high-precision and high-stiffness. As a main spindle bearing, the angular-contact ball bearing is well used. A rolling bearing is usually only a small part of a larger mechanical system, but its performance can have a great influence on the functioning of the whole machine. This work is about fatigue life tester design and monitoring of defected rolling-element bearings. The major work is done via experiments and the vibration signal is analysised by means of frequency spectrum technique. By analyzing the frequency spectrum, it is possible to view the condition of the bearings.

  • PDF

웨이블릿변환이 접목된 포락처리를 이용한 저속 회전하는 구름요소베어링 결함 진단 (Low Speed Rolling Bearing Fault Detection Using AE Signal Analyzed By Envelop Analysis Added DWT)

  • 김병수;김원철;구동식;김재구;최병근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.672-678
    • /
    • 2009
  • Acoustic Emission (AE) technique is a non-destructive testing method and widely used for the early detection of faults in rotating machines in these days, because the sensitivity of AE transducers is higher than normal accelerometers. So it can detect low energy vibration signals. The faults in the rotating machines are generally occurred at bearings and gearboxes which are the principal parts of the machines. It was studied to detect the bearing faults by envelop analysis in several decade years. And the researches showed that AE had a possibility of the application in condition monitoring system(CMS) using the envelope analysis for the rolling bearing. And peak ratio (PR) was developed for expression of the bearing condition in condition monitoring system using AE. Noise level is needed to reduce to take exact PR value because the PR is calculated from total root mean square (RMS) and the harmonics peak levels of the defect frequencies of the bearing. Therefore, in this paper, the discrete wavelet transform (DWT) was added in the envelope analysis to reduce the noise level in the AE signals. And then, the PR was calculated and compared with general envelope analysis result and the result of envelope analysis added the DWT. In the experiment result about inner fault of bearing, defect frequency was difficult to find about only envelop analysis. But it's easy to find defect frequency after wavelet transform. Therefore, Envelop analysis added wavelet transform was useful method for early detection of default in signal process.

적외선열화상을 이용한 베어링 실시간 손상검출 상태감시의 전산수치해석 비교 (Comparison of FEA with Condition Monitoring for Real-Time Damage Detection of Bearing Using Infrared Thermography Techniques)

  • 김호종;김원태
    • 비파괴검사학회지
    • /
    • 제35권3호
    • /
    • pp.185-192
    • /
    • 2015
  • 동적하중에서의 베어링 결함에 대한 실시간 진단기술은 상대적으로 저조하다. 따라서 볼베어링의 이상상태 현상으로 인한 온도 상승 및 진동 증가 등을 사전에 검출하는 기술이 필요하며, 회전체에 대한 운전상태 감시 및 손상 진단을 통해 발전설비의 원활한 운전을 기할 수 있는 검출 기술이 필요하다. 적외선 열화상 실험과 더불어 ANSYS를 이용한 유한요소해석으로부터 실험과 동일한 베어링을 구조 설계 및 해석하여 데이터를 분석함으로써 열화상 기술로 얻은 데이터의 신뢰성을 확보하였다.

Improved Mechanical Fault Identification of an Induction Motor Using Teager-Kaiser Energy Operator

  • Agrawal, Sudhir;Giri, V.K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1955-1962
    • /
    • 2017
  • Induction motors are a workhorse for the industry. The condition monitoring and fault analysis are the main concern for the engineers. The bearing is one of the vital segment of the induction machine and the condition of the whole machine is decided based on the condition of the bearing. In the present paper, the vibration signal of the bearing has been used for the analysis. The first line of action is to perform a statistical analysis of the vibration signal which gives trends in signal. To get the location of a fault in the bearing the second action is to develop an index based on Wavelet Packet Transform node energy named as Bearing Damage Index (BDI). Further, Teager-Kaiser Energy Operator (TKEO) has been calculated from higher index value to get the envelope and finally Power Spectral Density (PSD) has been applied to identify the fault frequencies. A performance index has also been developed to compare the usefulness of the proposed method with other existing methods. The result shows that the strong amplitude of fault characteristics and its side bands help to decide the type of fault present in the recorded signal obtained from the bearing.

FTA(Fault Tree Analysis)기법을 이용한 이송용 대부하 베어링 고장 진단 (Fault diagnosis of walking beam roller bearing by FTA)

  • Bae, Y.H.;Lee, H.K.;Lee, S.J.
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.110-123
    • /
    • 1994
  • The development of automatic production systems have required inteligent diagnostic and monitoring function to repair system failure and reduce production loss by the failure. In order to perform accurate functions of intelligent system, inferencing about total system failure and fault analysis due to each mechanical component failures are required. Also the solution about repair and maintenance can be suggested from these analysis results. As an essential component of mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical defficiency, mechanical condition(vibration, overloading, misalignment) and environmental effect. This study described roller bearing fault train due to stress variation and metallurgical defficiency from lubricant failure by using FTA.

  • PDF

초음파 측정에 의한 베어링손상 평가 (Assessment of Bearing Damage by Ultrasonic Measurement)

  • 이상국;이인철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.395-400
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.

  • PDF

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Sensor placement strategy for high quality sensing in machine health monitoring

  • Gao, Robert X.;Wang, Changting;Sheng, Shuangwen
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.121-140
    • /
    • 2005
  • This paper presents a systematic investigation of the effect of sensor location on the data quality and subsequently, on the effectiveness of machine health monitoring. Based on an analysis of the signal propagation process from the defect location to the sensor, numerical simulations using finite element modeling were conducted on a bearing test bed to determine the signal strength at several representative sensor locations. The results showed that placing sensors closely to the machine component being monitored is critical to achieving high signal-to-noise ratio, thus improving the data quality. Using millimeter-sized piezoceramic plates, the obtained results were evaluated experimentally. A comparison with a set of commercial vibration sensors verified the developed structural dynamics-based sensor placement strategy. It further demonstrated that the proposed shock wave-based sensing technique provided an effective alternative to vibration measurement, while requiring less space for sensor installation.