• Title/Summary/Keyword: bearing condition monitoring

Search Result 68, Processing Time 0.031 seconds

Fault Diagnosis of Ball Bearings within Rotational Machines Using the Infrared Thermography Method

  • Kim, Dong-Yeon;Yun, Han-Bit;Yang, Sung-Mo;Kim, Won-Tae;Hong, Dong-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.558-563
    • /
    • 2010
  • In this paper, the novel approach for the fault diagnosis of the bearing equipped with rotational mechanical facilities was studied. As research works, by applying the ball bearing used extensively in many industrial fields, experiments were conducted in order to propose the new prognostic method about the condition monitoring for the rotational bodies based on the condition analysis of infrared thermography. Also, by using the vibration spectrum analysis, the real time monitoring was performed. As results, it was confirmed that infrared thermography method could be adapted into monitor and diagnose the fault for bearing by evaluating quantitatively and qualitatively the temperature characteristics according to the condition of the ball bearing.

The application of AE transducer for the bearing condition monitoring of low-speed machine (저속 회전 기계의 베어링 Condition Monitoring을 위한 AE 변환기 적용)

  • Jeong, H.E.;Gu, D.S.;Kim, H.J.;Tan, Andy;Kim, Y.H.;Choi, B.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.319-323
    • /
    • 2007
  • Acoustic emission (AE) was originally developed for non-destructive testing of static structure, but over the year its application has been extended to health monitoring of rotating machines and bearings. It offers the advantage of earlier defect detection in comparison with monitoring bearing. This study was diagnosed low-speed machine which had a fault bearing for early detection by AE. And the artificial faults in a experimentation bearing was made for the bearing signals from difference speed and load were compared and analyzed by AE.

  • PDF

The Early Detection of Journal Bearing Failures by a Pattern Recognition of Ultrasonic Wave (초음파의 형상인식법을 이용한 저널베어링의 마멸파손 검지)

  • 윤의성;손동구;안효석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2061-2068
    • /
    • 1993
  • Condition monitoring technology is of great importance for the maintenance of complex machinery in view of its early monitoring of the abnormal condition and the protection against failure. Several methods have been used for the detection of failure of journal bearings, one of the main elements of mechanical system. The methods most frequently used are vibration and temperature monitoring, but these are unable to monitor the wear conditions exactly. In this study, an ultrasonic measument method, one of the non-destructive testing methods, was introduced as the monitoring technology. Furtermore a pattem recognition method was applied to analyze the ultrasonic signal. The monitoring system using the pattern recognition method is composed of digital signal processing units and uses Hamming net algorithm for the recognition of ultrasonic waves. From the journal bearing wear test, the occurrence of adhesive wear of the white metal in rubbing contact with the shaft was exactly detected by this system, and the wear status of the journal bearing was monitored by measuring the wear thickness.

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.

Case Study on Bearing Electric Arcing (베어링 Electric Arcing 예지사례)

  • Chun, Yong-Sang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1076-1077
    • /
    • 2007
  • CMS(Condition Monitoring System) is a useful tool to predict the defect of machine condition, for example, Motor, Bearing, Gear, Fan, etc. And, recently CMS is very important on plant. In this paper, describe the bearing electric arcing with example.

  • PDF

Bearing Fault Diagnosis by Condition Monitoring Method (Condition Monitoring기법에 의한 베어링의 이상진단)

  • 이정철;오재응;염성하;권오관
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.52-60
    • /
    • 1987
  • Many kinds of condition monitoring technique as the preventive maintenance technique have been studied, so this study has investigated the possibility of chbcking the trend in the fault diagnosis of ball bearing, one of the important elements of rotating machine, by applying the cepstral analysis method. And computer simulation is conducted in order to identify obviously the physical meaning of cepstral analysis. It is identified that cepstral analysis is effective method to distinguish between the basic and reflected wave by computer simulation, and we know that it is possible to apply the cepstral analysis to the arbitrary elements of rotating machine which are different in fundamental frequency. It is verified that cepstral analysis method is more effective than the other conventional method in bearing fault diganosis.

Vibration Characteristics According to Wear Progress of Ball Bearings (볼 베어링의 마멸 상태에 따른 진동 특성의 변화)

  • Cho, SangKyung;Park, JoungWoo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.141-147
    • /
    • 2017
  • The vibration data of bearings are very useful for monitoring and determining the condition of the bearings. The defect frequencies of ball bearings have been used for monitoring there condition. However, it is not easy to verify the defect frequencies as the wear progress. Therefore there is a need for an easy method to monitor the damages of bearings in real-time and to observe the variations in vibration characteristics as the wear progress. In this study, a bearing test equipment is constructed to diagnose the damage of bearings. The friction coefficient and vibration data are measured by using a torque sensor and an acceleration sensor, and the correlation between the measured data is analyzed to diagnose the condition of the bearing. We reached the following conclusions from the results. When the ball surface, inner and outer rings of a ball bearing are damaged, the friction coefficient increases to over 0.02 with an adhesion on the surface. Moreover this damage occurs more quickly with an increase in the number of revolutions. In the vibration characteristics, the amplitude of vibration wave appears high with an increase in the friction coefficient. In the high frequency range between 1000 and 2000 Hz, a wide range of frequency components with high amplitude occurs continuously irrespective of the number of revolutions.

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

A Study on the Condition Monitoring for Rolling Element Bearing using Higher Order Statistical Analysis of Sound-Vibration Signal (음향-진동 신호의 고차 통계해석을 이용한 회전요소 베어링의 상황감시에 관한 연구)

  • 이해철;이준서;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.405-413
    • /
    • 2000
  • This paper present study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skew are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

Predictive Maintenance System using Condition Monitoring System of Hydro-turbine Generator (수차발전기 상태진단시스템을 이용한 예지보전체계)

  • Kim, Eung-Tae;Ko, Sung-Ho;Kim, Hyun;Jeong, Yong-Chae;Choi, Seong-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.453-456
    • /
    • 2007
  • The purpose of this study is to explain the importance of Vibration Monitoring Device by introducing an example of Predictive Maintenance System using Condition Monitoring System of Hydro-turbine generator. Confirming vibration of generation equipment is commissioning procedure during equipment completion for checking guaranteed items. Data from Generator output range are used to determine output band to continue the performance of equipment. The Vibration Monitoring System is not absolute method of maintenance, but if it is used well with expert, it will be visible, data-analyzed, scientific maintenance more than others. And also, Condition Monitoring System is very important for remote controlled small hydro-power plant although most of it is installed in Large hydro-power plant.

  • PDF