• Title/Summary/Keyword: bearing characteristics

Search Result 1,871, Processing Time 0.029 seconds

Analysis of NRRO Characteristics of a HDD Spindle System Supported by Ball Bearing at Elevated Temperature (온도 상승에 따른 볼 베어링으로 지지되는HDD 회전축계 NRRO 특성 해석)

  • 김동균;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.564-571
    • /
    • 2003
  • This research investigates how characteristics of ball bearing affect non-repeatable runout(NRRO) in a HDD spindle system at elevated temperature. It shows that the elevated temperature results in the increase of bearing contact angle and the decrease of bearing deformation due to the different thermal expansion rate of the components of the HDD spindle system. The increase of contact angle at elevated temperature is so small that the variation of bearing frequencies is negligible. On the other hand, the decrease of bearing deformation at elevated temperature reduces the stiffness of ball bearing and the natural frequencies of HDD spindle system consequently, which changes the amplitude and the frequency distribution of NRRO.

  • PDF

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.

A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery (고속 터보기계용 공기 포일 저널 베어링의 신뢰성에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.199-206
    • /
    • 2002
  • This paper describes a reliability characteristics of an air foil journal bearing for high speed turbomachinery at room temperature. To verify the reliability of air foil journal bearing, lift-off characteristics, load carrying capacity, and 10,000 cycle start-stop test were performed with motor driven test rig. Lift-off test shows the relationship between the rotating speed of the shaft and the frictional torque with bearing surface. About load carrying capacity, the tested air foil journal bearing produced a load capacity of 500N at an operating speed of 15,000rpm, which is compared with results of numerical analysis and empirical coefficients. Finally, The trends in change of start torque, stop torque, and bearing temperature were shown during 10,000 cycle start-stop test of an air foil journal bearing. from the results of this work, an air foil bearing will be done well, as a supported bearing for high speed turbo-compressor.

  • PDF

A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery (고속 터보기계용 공기 포일 저널 베어링의 신뢰성에 관한 연구)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.7-14
    • /
    • 2003
  • This paper describes reliability characteristics of an air foil journal bearing for high-speed turbomachinery at a room temperature. To verify the reliability of air foil journal bearing, lift-off characteristics, load carrying capacity, and 10,000 cycle start-stop test were performed with a motor-driven test rig. A lift-off test shows the relationship between the rotating speed of the shaft and the frictional torque with bearing surface. About a load-carrying capacity, the tested air foil journal bearing produced a load capacity of 500N at an operating speed of 15,000rpm, which is compared with results of numerical analysis and empirical coefficients. Finally, the trends in change of start torque, stop torque, and bearing temperature were shown during a 10,000-cycle start-stop test of an air foil journal bearing. We found that an air foil bearing performs well, as a supported bearing for the high-speed turbocompressor.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

Feeding Characteristics of Ball Guide in High Speed Spindle's Bearing Preload Units (고속 주축 베어링용 예압장치의 볼 가이드 이송특성)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2011
  • The Bearing preload units are used for stable rotational movements of high speed spindles. The feeding mechanism of the preload unit is important to prevent overheat of bearings and to keep constant bearing load under thermal deformation of spindle unit. In this study, ball slide guide and ball bush as feeding mechanism of preload unit are selected. The maximum static friction force, radial stiffness and damping ratio of ball slide guide with ball load, ball number and ball size are widely investigated. In conclusion, the surface of ball slide guide must be heat treated to reduce static friction force. The number and size of ball are increased to control sensitive bearing preload force.

Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution (고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

Analysis of NRRO Caused by Ball Bearing in a HDD Spindle System at Elevated Temperature (볼 베어링에 의해 발생하는 HDD 회전축계 NRRO의 온도 상승에 따른 변화)

  • Kim, D.K.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.792-800
    • /
    • 2004
  • This research investigates the non-repeatable runout (NRRO) of a HDD spindle system at elevated temperature by analyzing the characteristics of a ball bearing and the natural vibration characteristics of a HDD spindle system due to the effect of elevated temperature. It shows that the elevated temperature results in the increase of the contact angle and the decrease of the deformation of the ball bearing in a HDD spindle system. The variation of bearing frequencies, which are dependent on the cosine function of contact angle, is almost negligible at elevated temperature. However, the decrease of bearing deformation at elevated temperature reduces the stiffness of the ball bearing and the natural frequencies of a HDD spindle system consequently. The latter has a significant effect on the amplitude and the frequency distribution of NRRO at elevated temperature.

A Study on the Characteristics of Bearing Capacity for SIP Piles constructed on Rock Mass (암반에 근입된 SIP 말뚝의 지지력 특성에 관한 연구)

  • Kim, Tae-Hwoon;Park, Jun-Hong;Lee, Song
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.295-300
    • /
    • 2002
  • In this research problems of recent design methods and their improvement for SIP in domestic areas were studied by using the characteristics of load-settlement curves and bearing capacity from field loading tests. Elastic and plastic settlement for total settlement in each loading step conducted domestic areas had a tendency. From these tendency and bearing capacity determined by loading tests we can ascertain that empirical chart can be assistant tool in SIP design. It showes that SIP design using N-value in domestic area with soil condition of grarute type results in very conservative bearing capacity, to be opposed in soil with unprofitable geological condition the design can be insecure. Also, we can ascertain that Meyerhof's bearing capacity used modified N-value on tip part of pile is more applicable than recent design method where tip bearing capacity is 20NAp N-value limited to 50. These results show that modified design method can he more economic than before because of using pile's bearing capacity to tolerable load of pile material.

  • PDF

Proportional and Derivative Control of Hydrodynamic Journal Bearings (동압 베어링의 비례 및 미분 제어)

  • 노병후;김경웅
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2001
  • The paper presents the stability characteristics of a rotor-bearing system supported by actively controlled hydrodynamic journal bearing. The proportional and derivative controls including coupled motion are adopted for the control algorithm to control the hydrodynamic journal bearing with a circumferentially groove. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than a conventional analysis which uses the Reynolds condition. The stability characteristics of a rotor-bearing system supported by actively controlled hydrodynamic journal bearing are investigated for various control gains with the Routh-Hurwitz criteria using the linear dynamic coefficients which are obtained from the perturbation method. It is found that the speed at onset of the instability is increased for both proportional and derivative control of the bearing. It is also found that the proportional and derivative control of the coupled motion is more effective than that of the uncoupled motion.