• Title/Summary/Keyword: bearing characteristics

Search Result 1,871, Processing Time 0.031 seconds

A Numerical Analysis on the Rotordynamic Characteristics of a Hybrid Journal Bearing with Pair-Type Angled Injection Orifices (짝(Pair) 형태의 경사 공급구를 갖는 하이브리드 저널 베어링의 로터 동특성에 관한 수치해석)

  • 김창호;이용복
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 1997
  • The stability of a rotor-bearing system supported by swirl-controlled hybrid journal bearing with pair-type angled injection orifices is investigated for improvement of the whirl frequency ratio by allowing effective control of the tangential flow inside the bearing clearance, i.e., by achieving more freedom in controlling strength and direction of the supply tangential flow inside the bearing clearance. It is suggested that the system instability can be improved through the change of bearing dynamic characteristic parameters with the swirl control. The orifice diameter $d_0$ and recess injection angle $\alpha$ along with combinations of swirl/anti-swirl supply pressures and directions (3.0~3.0 MPa, 4.0~2.0 MPa, 2.0~4.0 MPa) are selected for design parameters for swirl-controlled effective factors dependent on journal speeds (3000, 9000, 15000, 21000 rpm). It has been found that the orifice diameter $d_0$ shows strong effects on effective maneuverability of direct-stiffness and direct damping values, while recess injection angle $\alpha$ results in substantial effects on the magnitude and direction of cross-stiffness. Specifically, recess injection parameters which are functions of angle of orifice feeding flow and recess dimensions showed very feasible effect on the stability control of swirl-controlled rotor-bearing system.

Large-scale pilot test study on bearing capacity of sea-crossing bridge main pier pile foundations

  • Zhang, Xuefeng;Li, Qingning;Ma, Ye;Zhang, Xiaojiang;Yang, Shizhao
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.201-212
    • /
    • 2014
  • Due to the sea-crossing bridge span is generally large and main pier pile foundations are located in deep water and carry large vertical load, sea-crossing bridge main pier pile foundations bearing mechanism and load deformation characteristics are still vague. Authors studied the vertical bearing properties of sea-crossing bridge main pier pile foundations through pilot load tests. Large tonnage load test of Qingdao Bay Bridge main pier pile program is designed by using per-stressed technique to optimize the design of anchor pile reaction beam system. Test results show that the design is feasible and effective. This method can directly test bearing capacity of main pier pile foundations, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test study the vertical bearing properties of main pier pile foundation and compared with the generally short pile, author summarized the main pier pile foundations vertical bearing capacity and the main problem of design and construction which need to pay attention, and provide a reliable basis and experience for sea-crossing bridge main pier pile foundations design and construction.

Performance of Tilting Pad Journal Bearings with Different Thermal Boundary Conditions (열 경계 조건이 다른 틸팅패드저널베어링의 성능)

  • Suh, Junho;Hwang, Cheolho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.14-24
    • /
    • 2021
  • This study shows the effect of the thermal boundary condition around the tilting pad journal bearing on the static and dynamic characteristics of the bearing through a high-precision numerical model. In many cases, it is very difficult to predict or measure the exact thermal boundary conditions around bearings at the operating site of a turbomachine, not even in a laboratory. The purpose of this study is not to predict the thermal boundary conditions around the bearing, but to find out how the performance of the bearing changes under different thermal boundary conditions. Lubricating oil, bearing pads and shafts were modeled in three dimensions using the finite element method, and the heat transfer between these three elements and the resulting thermal deformation were considered. The Generalized Reynolds equation and three-dimensional energy equation that can take into account the viscosity change in the direction of the film thickness are connected and analyzed by the relationship between viscosity and temperature. The numerical model was written in in-house code using MATLAB, and a parallel processing algorithm was used to improve the analysis speed. Constant temperature and convection temperature conditions are used as the thermal boundary conditions. Notably, the conditions around the bearing pad, rather than the temperature boundary conditions around the shaft, have a greater influence on the performance changes of the bearing.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

Experimental study on the compressive stress dependency of full scale low hardness lead rubber bearing

  • Lee, Hong-Pyo;Cho, Myung-Sug;Kim, Sunyong;Park, Jin-Young;Jang, Kwang-Seok
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.89-103
    • /
    • 2014
  • According to experimental studies made so far, design formula of shear characteristics suggested by ISO 22762 and JEAG 4614, representative design code for Lead Rubber Bearing(LRB) shows dependence caused by changes in compressive stress. Especially, in the case of atypical special structure, such as a nuclear power structure, placement of seismic isolation bearing is more limited compared to that of existing structures and design compressive stress is various in sizes. As a result, there is a difference between design factor and real behavior with regards to shear characteristics of base isolation device, depending on compressive stress. In this study, a full-scale low hardness device of LRB, representative base isolation device was manufactured, analyzed, and then evaluated through an experiment on shear characteristics related to various compressive stresses. With design compressive stress of the full-scale LRB (13MPa) being a basis, changes in shear characteristics were analyzed for compressive stress of 5 MPa, 10 MPa, 13 MPa, 15 MPa, and 20 MPa based on characteristics test specified by ISO 22762:2010 and based on the test result, a regression analysis was made to offer an empirical formula. With application of proposed design formula which reflected the existing design formula and empirical formula, trend of horizontal characteristics was analyzed.

A Field Test on Bearing Capacity Characteristics of Materials for Ground Cavity Restoration Based on Plate Bearing Test (평판재하시험을 이용한 공동 복구재료의 지지특성에 관한 현장실험)

  • Park, Jeong-Jun;Shin, Heesoo;Kim, Dongwook;You, Seung-Kyong;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.293-304
    • /
    • 2018
  • This paper described a results of field test based on plate bearing test of the restoration material, which was developed to restore the ground cavity due to sewerage damage. The analysis of bearing capacity characteristics on the restoration materials was performed by experimental results. The results showed that the load bearing capacity in the maximum stress condition of the foundation ground is about 66%-70%, when the expansion mat is embedded at the bottom of 0.1 m and 0.2 m from the ground surface. However, The load bearing capacity of expansion mat according to embedded depth was not large. The load bearing capacity of concrete mats was about 82%-90% compared with that of ground surface, and it showed about 50% of the load bearing capacity compared with the expansion mat. As a result of analysis of allowable bearing capacity according to restoration materials, it was confirmed that the allowable bearing capacity of the expansion mat and the concrete was about 130%-150% and about 160% more than the foundation ground, respectively.

Estimation of Bearing Capacity of SIP Pile Installed by Improved Criteria (개선된 기준으로 시공된 SIP 말뚝의 지지력 평가에 관한 연구)

  • Park, Jong-Bae;Kim, Jung-Soo;Lim, Hae-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.5-15
    • /
    • 2004
  • SIP has been widely used as a low noise and vibration piling method in Korea. But the quality control of SIP was not properly settled down and field workers did not fully understand the principle of SIP method. So not a less troubles were raised at construction site and bearing capacity was not fully mobilized. To settle these problems, Korea National Housing Corporation amended the construction and load test criteria of SIP in 2002. After load tests on the SIPs installed in field according to the new criteria, we found that the bearing capacity in field vs the design load ratio increased and bearing characteristics was enhanced than that installed by the former criteria. To consider the enhanced bearing characteristics in the pile design and determine the adequate design criteria, this paper analyzed the accuracy of design criterion which were commonly used in Korea comparing with the load test results. Analysis result shows that Meyerhof criteria(1976) properly simulates the bearing capacity of SIP installed by the new construction and load test criteria.

  • PDF

Experimental Study on Damage to Journal Bearing due to Contaminating Particles in Lubricant (윤활유 오염입자에 의한 저널 베어링 손상에 관한 실험적 연구)

  • Song, Chang Seok;Lee, Bora;Yu, YongHun;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Recently, there have been reports of severe symptoms of wear in bearings due to foreign substances mixed in lubricants. Therefore, studying the effects of foreign substances (such as combustion products and metallic debris) on the wear characteristics of journal bearings and proposing appropriate management standards for lubricant cleanliness have become necessary. Studies on the effect of particle size and concentration of foreign substances on surface damage have actively progressed in the recent times. These studies indicate the possibility of foreign substances causing direct wear of bearing surfaces. However, experiments conducted until now involve only basic tests such as the Pin-on-Disk test instead of those involving real bearing systems. This study experimentally examines the damage to the surface of a journal bearing due to foreign substances (combustion products and alumina) mixed with the lubricant, as well as the effect of the type and size of particles on its wear characteristics. The study uses an experimental journal bearing similar to a real bearing system for conducting the lubrication test. Hydrodynamic Lubrication (HL) numerical analysis, experiment results, and film parameters are used for calculating the operating conditions required for achieving the desired film thickness, and the results of the analysis are modified for considering the surface roughness. The run-time of the experiment is 10 min including the stabilization process. The experiment results show that alumina particles larger than the minimum film thickness cause significant surface damage.

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors (고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정)

  • Jeong, Kwon Jong;Hwang, Sung Ho;Baek, Doo San;Kim, Tae Young;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.