• Title/Summary/Keyword: bearing characteristics

Search Result 1,871, Processing Time 0.023 seconds

Temperature Characteristics of High Speed Angular Contact Ball Bearing (고속 앵귤러 컨택트 볼 베어링의 온도특성)

  • Hyeon, Jun-Su;Park, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.96-101
    • /
    • 2001
  • This paper shows the temperature characteristics of a high speed angular contact ball gearing which is 7004C type with ISO P2 tolerance class. A built-in motor type high speed spindle which adopts an oil-air lubrication system was used to measure the temperature rise up to 60,000rpm. The gearing temperature was measured using thermocouples that were attached to the outside surfaces of the outer rings. The result showed that the continuous test method which was suggested in this paper is more effective than on and off method and the lubrication oil supply rate should be reduced in high speed rolling bearings as long as the seizure does not occur. And the result were confirmed that the bearings packed with ceramic balls are superior to those with steel balls in temperature characteristics.

  • PDF

A Study on the Vibration Characteristics of HDD Spindle Motor (하드 디스크 구동 스핀들 모터의 진동 특성에 관한 연구)

  • 장건희;한재혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.160-166
    • /
    • 1997
  • The spindle motor in a computer hard disk drive can be modeled as a rotor-bearing system supported by the base plate. Ball bearing is the crucial element to determine the stiffness of the spindle motor, and its design parameters and operating conditions determine the dynamic characteristics of the spindle motor. In the analysis of a rotor-bearing system with a short shaft like a spindle motor, the stiffness of the base plate as well as ball bearings must be considered accurately to analyze the dynamic charateristics of a spindle motor. In this paper, the lateral and the axial vibration of the spindle motor were analyzed by the transfer matrix method for the dual-shaft rotor-bearing model and by d.o.f lumped parameter model, respectively. The simulation results had good agreements with the experimental modal testing. The dynamic characteristics were fully investigated for the change of the major design parameters of the spindle motor, i.e. the preload of ball bearings and the rotational speed.

  • PDF

A Study on Design of Crankshaft Bearing System (크랭크샤프트 베어링시스템 설계 연구)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2006
  • Two kinds of crankshaft oil supply system which were called continuous and discontinuous oil sup-ply system have recently been adopted in engine developing process. In order to clarify the lubrication characteristics for theses systems, in this paper, the comparison studies on supplied oil temperature, pressure, aspect ratio of bearings, and radial clearance were carried out for the main and the connecting rod bearing using computational fluid dynamic analysis.

Nonlinear Frequency Response Analysis of Hydrodynamic Journal Bearing Under External Disturbance (외란을 받는 저널 베어링의 비선형 주파수 응답해석)

  • 노병후;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.241-245
    • /
    • 1998
  • The traditional approach is to characterize the behavior and performance of fluid film hydrodynamic journal bearings by means of linearized bearing analysis. The objective of this paper is to examine the nonlinear characteristics of the journal bearing when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width Reynolds equation at each time step by the solution of the column method. Frequency response functions obtained from both linear and nonlinear bearing simulations are compared with each other.

  • PDF

80000 RPM용 고속회전축계의 최적설계에 관한 연구

  • 김종립;윤기찬;하재용;박종권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.312-317
    • /
    • 1997
  • This paper present an optimum design for the rotor-bearing system of a high-speed (80000RPM) ultra-centrifuge supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modelled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyed by using a transfer-matrix method iteratively. For optimum design, minimizing the weight of a rotor is used as a cost function and the Augmented Lagrange Multiplier (ALM) method is employed. The result shows that the rotor-bearing system is optimized to obtain 8% weight reduction.

Operating Characteristics of Counterrotating Floating Ring Journal Bearings

  • Cheong, Yeon-Min;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • The steady state performance of the counterrotating floating ring journal bearings is analyzed with isothermal finite bearing theory. The effect of counterrotating speed of the sleeve on the performance of the bearing is investigated. It is shown that counterrotating floating ring journal bearings can have considerable load capacity at the same counterrotating speeds, while conventional circular journal bearings with one fluid film cannot. Investigating the relationship between the frictional torques exerted on the ring due to the inner and outer films and the rotational speed of the ring, the stability of the equilibrium state is identified and the operating characteristics of the counterrotating floating ring journal bearing according to the method of acceleration or deceleration of the rotational speeds of the journal and sleeve are clarified. It is theoretically confirmed that floating ring journal bearings can be used in counterrotating journal-bearing system and become good substitutes for rolling bearings in counterrotating systems.

  • PDF

A study on the static and stability characteristics of the oil-lubricated herringbone groove journal bearing (오일윤활 빗살무늬 저널 베어링에 대한 정특성 및 안정성 해석)

  • Kang, Kyung-Phil;Rhim, Yoon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.859-867
    • /
    • 1998
  • An oil lubricated Herringbone aroove jounal bearing(HGJB) with eight-circular-profile grooves on the non-rotating bearing surface is analyzed numerically and experimentally. The load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for the various bearing configurations. The onset speed of instability is also examined for the various eccentricity ratios. The configuration parameters of HGJB, such as groove depth ratio, groove width ratio, and groove angle, are dependent on each other because the grooves are generated by using eight small balls rolling over the inner surface of the sleeve with press fit. Therefore, it is not allowed to suggest a set of optimal design parameters such as the one for the rectangular profile HGJB. The overall results from numerical and experimental analysis prove that the circular profile HGJB has an excellent stability characteristics and the higher load carrying capacity than the plain journal bearing.

An Experimental Study on Thermal Characteristics of Journal Bearing (저어널 베어링의 온도 특성에 관한 실험적 연구)

  • 서태설;김경웅
    • Tribology and Lubricants
    • /
    • v.3 no.2
    • /
    • pp.68-71
    • /
    • 1987
  • This paper deals with some thermal Characteristics of journal bearing such as the behaviour of the maximum bearing temperature, the lubricant's carry-over in the inlet region and so on. Temperatures of the bearing and the lubricants being supplied and discharged were measured along with shaft speed and bearing load. The results showed that with the increase of the Shaft speed, the maximum temperature rose at any shaft speed at a defferent rate of change defending on the flow regime of the lubricant film. And the lower eccentricity ratio is the more lubricant's carry-over occur. Additionally it was partially proved that the oil discharge temperature and the maximum temperature changed in quite different each other.

Theoretical Analysis of the Slipper Hydrostatic Bearing Shape in the Swash Plate Type Axial Piston Pump (사판식 유압 피스톤 펌프의 슬리퍼 정압베어링면 형상에 관한 이론해석)

  • Cho, I.S.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • In the high rotational speed and pressure state, the leakage flow rate of the axial piston pump is one of the serious problems and make great reasons to decrease the volume efficiency. In this study, tribology characteristics is clarified for the hydrostatic slipper bearing in the swash plate type axial piston pump, by means of theoretical analysis for the different shape of the hydrostatic slipper bearing. It was analyzed by Mathcad software and used equal conditions at $0^{\circ}$ swash plate angle in each model. The results show that performance characteristics of the swash plate type axial piston pump are significantly influenced by the shape of the hydrostatic slipper bearing.

Dynamic Analysis of a Large Tilting Pad Journal Bearing Including the Effects of Temperature Rise and Turbulence (온도상승 및 난류효과를 고려한 대형 틸팅패드 저널베어링의 동특성 해석)

  • 하현천;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.313-321
    • /
    • 1995
  • The effects of the temperature rise and the turbulence are very important factors to predict the accurate performance of a large tilting pad journal bearing. In this study, the dynamic characteristics of a large tilting pad journal bearing are analyzed, taking into account the three dimensional variation of lubricant viscosity and turbulence. The effects of the temperature rise and the turbulence on the stiffness and damping coefficients are investigated in comparison with the results from the laminar or isothermal theory. The stiffness and damping coefficients increase due to the turbulence but decrease due to the temperature rise. The results show that the effects of both the temperature rise and turbulence must be considered simultaneously in order to predict the dynamic characteristics of a large tilting pad journal bearing more accurately.