• Title/Summary/Keyword: bearing capacity of foundation

Search Result 397, Processing Time 0.027 seconds

A Study on the Consolidation and Creep Behaviors of Soft Foundations Reinforced by Geotextiles (토목기유(土木機維)로 보강(補強)된 연약지반(軟弱地盤)의 압밀(壓密) 및 Creep 거동(擧動)에 관한 연구(研究))

  • Chung, Hyung Sik;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.75-84
    • /
    • 1991
  • When we construct the earth structures such as embankments, on soft ground which are consisted of thick marine silty clay, the foundations deform due to consolidation and creep. For the stabilization of the earth structures constructed on soft foundations, we usually uses the mattress and they play an important role in increasing an ultimate bearing capacity by the dispersion of load of embankment. The purpose of this paper was to predict rationally a long term deformation of earth structures and to contribute to embankment design and maintenance. We determined a rheological model of marine clay from experimental data, and developed a computer program using the chosen model and found out the long term behavior of embankment. The results of this paper are as follows: 1. The developed program can analyze simultaneously consolidation and creep. 2. From the results of creep test, the rheological model of marine silty clay can be represented by the Vyalov model. 3. The displacement of embankment on reinforced foundation were smaller than those of the unreinforced foundation in showing the effects of geotextiles on foundation deformations.

  • PDF

Natural Frequency Measurement for Scour Damage Assessment of Caisson Pier (교량 우물통 기초의 세굴피해 평가를 위한 고유진동수 측정)

  • Nguyen, Quang-Thien-Buu;Ko, Seok-Jun;Jung, Gyungja;Lee, Ju-Hyung;Yoo, Min-Taek;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.51-60
    • /
    • 2021
  • River scour erodes the soil around the pier, reducing the lateral bearing capacity of the pier and lowering the stability of the structure. In this study, in order to examine the effect of scouring on the stability of the structure, an experiment was performed to measure the natural frequency of the pier according to the excavation of the surrounding ground. Impact vibration test was conducted on the pier with the caisson foundation of the Mangyeonggang Bridge, which is scheduled to be demolished. Accelerometers were attached to the top, center, and bottom of the pier and the acceleration responses were measured by hitting those three points. The experimental results showed that the top hit showed consistent and reasonable results of the acceleration responses according to the hitting position. The measured accelerations were converted to the frequency domain through Fast Fourier Transform (FFT), and then the natural frequency was determined. In addition, to analyze the scour effect on the natural frequency of the pier, the ground around the pier was excavated and the natural frequency change was analyzed. As a result, the natural frequency showed the decreasing tendency according to the excavation depth, but the decrease was small due to the large stiffness of the caisson foundation.

Prediction of Adfreeze Bond Strength Using Artificial Neural Network (인공신경망을 활용한 동착강도 예측)

  • Ko, Sung-Gyu;Shin, Hyu-Soung;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.71-81
    • /
    • 2011
  • Adfreeze bond strength is a primary design parameter, which determines bearing capacity of pile foundation in frozen ground. It is reported that adfreeze bond strength is influenced by various affecting factors like freezing temperature, confining pressure, characteristics of pile surface, soil type, etc. However, several limited researches have been performed to obtain adfreeze bond strength, for past studies considered only few affecting factors such as freezing temperature and type of pile structures. Therefore, there exists a limitation of estimating the design parameter of pile foundation with various factors in frozen ground. In this study, artificial neural network algorithm was involved to predict adfreeze bond strength with various affecting factors. From past five studies, 137 data for various experimental conditions were collected. It was divided by 100 training data and 37 testing data in random manner. Based on the analysis result, it was found that it is necessary to consider various affecting factors for the prediction of adfreeze bond strength and the prediction with artificial neural network algorithm provides enough reliability. In addition, the result of parametric study showed that temperature and pile type are primary affecting factors for adfreeze bond strength. And it was also shown that vertical stress influences only certain temperature zone, and various soil types and loading speeds might cause the change of evolution trend for adfreeze bond strength.

Numerical Study on Lateral Pile Behaviors of Piled Gravity Base Foundations for Offshore Wind Turbine (수치해석을 통한 해상풍력 말뚝지지중력식기초의 수평거동 분석)

  • Seo, Ji-Hoon;Choo, Yun Wook;Goo, Jeong-Min;Kim, Youngho;Park, Jae Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.5-19
    • /
    • 2016
  • This paper presents the results from three-dimensional finite element (FE) analysis undertaken to provide insight into the lateral behaviors of piled gravity base foundation (GBF) for offshore wind turbine. The piled GBF was originally developed to support the gravity based foundation in very soft clay soil. A GBF is supported by five piles in a cross arrangement to achieve additional vertical bearing capacity. This study considered four different cases including a) single pile, b) three-by-three group pile (with nine piles), c) cross-arrangement group pile (with five piles), and d) piled GBF. All the cases were installed in homogenous soft clay soil with undrained shear strength of 20 kPa. From the numerical results, p-y curves and thus P-multiplier was back-calculated. For the group pile cases, the group effect decreased with increasing the number of piles. Interestingly, for the piled GBF, the P-multipliers showed a unique trend, compared to the group pile cases. This study concluded that the global lateral behaviour of the piled GBF was influenced strongly by the interaction between GBF and contacted soil surface.

An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures (토목섬유 보강 구조물의 응력 및 거동 해석)

  • 고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF

Case Study on Global Slope Failure Case of Segmental Retaining Wall (블록식보강토옹벽의 전면 사면붕괴 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2005
  • Recently, geosynthetic reinforced earth walls are gradually replacing conventional concrete retaining walls for reasons of economy, expediency of construction, and aesthetics. A number of reinforced soil walls having more than 10m heights have been constructed to make more effective development in the country. However, mistakes in design and construction of reinforced earth walls have resulted in many troubles such as failure of reinforced earth walls, horizontal deformationor breakdown of facings, and so forth during or after construction. In this paper, a case study on global sliding failure of a geogrid-reinforced tiered wall is carried out to investigate the causes of the failure and suggest the proper countermeasures. From the subsurface investigation and field instrumentation, It is found that the cause of the global sliding failure was occurred by decreasing of bearing capacity of foundation ground induced by infiltration of rainwater.

  • PDF

Driveability and Bearing Capacity Characteristics Analysis of 590 MPa Grade High Strength Steel Pipe Pile at Songdo Area through Dynamic Load Tests (동재하시험결과 분석을 통한 송도지역 590MPa급 고강도 강관말뚝의 항타관입성 및 지지력 특성 분석)

  • La, Seung-Min;Hong, Bong-Kyun;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Domestic usage of high strength steel for pile has been limited to steel with yield strength (YS) of 490 MPa. However, design and construction cases abroad show beneficial usage of steel pipe with YS ranging in 500~700 MPa. In this study, YS 590 MPa steel pipe has been tested for driven pile foundation in Songdo area. Pile dynamic analysis (PDA) was carried out for 18 piles of which 16 piles have been reviewed for comparison of the PDA test results with those of GRLWeap analysis using SPT N value. Back analysis of PDA analysis was also carried out to narrow the deviation of standard SPT N value used in GRLWeap analysis. A regression equation is suggested for the shaft and toe resistance according to SPT N values for future GRLWeap analysis that can be used in the designing stage at Songdo area.

Settlement Behavior of Foundation Rubble-mound by Vibro-Compaction (진동다짐에 의한 기초사석의 침하거동)

  • Yoo, Kun-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.127-136
    • /
    • 2011
  • The settlement of a compaction plate resting on the surface of rubble-mound and subjected to a vibrating vertical load can be characterized by a transient amplitude and a plastic settlement. As long as the maximum imposed load does not exceed the bearing capacity of the rubble-mound, plastic settlement will approach an ultimate value and essentially steady-state vibration will ensue. For the settlement behavior by vibro-compaction, most laboratory experiments were conducted on laterally confined samples with loads over the full surface area or on samples placed on a vibrating table. In the field, the loads cover only a small fraction of the surface area. In this study, crushed stones are loaded with the same as field condition. According to the vibro-compaction experiments on crushed stone, it was found that approximately 90% of total settlement occur within 2 minutes and plastic settlement increases with increasing cyclic stress levels including static and dynamic stress. A compaction equation on which the number of load cycles, amplitude of plate, settlement, width of plate, and cyclic stress are related each other is proposed.

Analysis of Groundwater Level Prediction Performance with Influencing Factors by Artificial Neural Network (지하수위 영향인자에 따른 인공신경망 기반의 지하수위 예측 성능 분석)

  • Kim, Incheol;Lee, Jaehwan;Kim, Junghwan;Lee, Hyoungkyu;Lee, Junhwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.19-31
    • /
    • 2021
  • Groundwater level (GWL) causes the stress state within soil and affects the bearing capacity and the settlement of foundation. In this study, the analyses of influencing factors on GWL fluctuation were performed. From the results, river stage and moving average of precipitation were main influence components for urban near large river and rural areas, respectively. In addition, the prediction performance of GWL using artificial neural network (ANN) was conducted with respect to the influence components. As a result, the effect of main component was significant on the prediction performance of GWL.

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF