• Title/Summary/Keyword: beamline

Search Result 82, Processing Time 0.032 seconds

Adsorption Characteristics of Furan, Thiophene, and Selenophene on Si(100) Surface

  • Park, Jinwoo;Lee, Han-Koo;Chung, J.W.;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.202.2-202.2
    • /
    • 2014
  • We have studied the bonding structures of five membered aromatic ring heterocyclic molecules, such as furan, thiophene, and selenophene, adsorbed on the Si(100) surface at room temperature with density functional theory. Additionally, we have investigated the evolution upon annealing of thiophene and selenophene molecules on the Si(100) surface by the core-level photoemission spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The core-level-spectra measured at different temperatures are consistently interpreted in terms of various adsorption structures suggested by theoretical calculations. In this study, we found the most suitable structures by theoretical and experimental results considering room temperature and mild thermal annealing.

  • PDF

The Semi-Transparent Diamond Monochromator at the ESRF Troika Beamlines

  • Mattenet Muriel;Konovalov Oleg;Madsen Anders;Grubel Gerhard
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.473-477
    • /
    • 2006
  • The above described semi-transparent monochromators have been operational since 1997. Four units are permanently operating at the ESRF beam line ID14. Two units are in continuous operation at ID 10 and one unit is installed at the APS beamline 8-ID in USA. The water cooling of the crystals is currently being revised and above we showed that improvements most likely are possible by using micro fluidics techniques. Further tests will be performed in collaboration with the CEA-France and tested at ESRF. Parallel developments including nanofluids as coolants are under evaluation. Combination of nanofluidics and microfluidics cooling devices are under study. The authors are grateful to C. Gillot and J-A. Gruss for useful discussions and advices, and to S.Mcheik for his work on the thermal model.

Development Characteristics of PMMA fabricated by X-ray Lithography in Various Development Conditions (X-ray 식각된 PMMA의 다양한 현상조건에 따른 현상특성)

  • Kim, Yun-Ho;Park, Joon-Shik;Lee, In-Gyu;Park, Soon-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.284-287
    • /
    • 2004
  • Micro-structures fabricated by X-ray lithography are largely affected by doses, development conditions and other factors. For these reasons, PMMA development rates and its surface profiles under various development conditions were obseued. Development rates were measured in the rage from 1 to 6 $kJ/cm^3$ using the 9C1 white beamline of Pohang light source(PLS). In this experiment, we observed that development rates of stacked PMMA sheet using Si filter were relatively higher than that of not using Si filter. Furthermore, development rates in condition with the acoustic agitation(1 MHz, 3.67 $W/cm^3$) were twice than that in dipping condition with $35^{\circ}C$ developer considering the PMMA sheets-substrate bond strength

  • PDF

Characterization of functionalized silicon surfaces and graphenes using synchrotron radiation PES

  • Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.40-40
    • /
    • 2010
  • Employing synchrotron radiation based photoemission spectroscopy (PES) and scanning tunneling microscopy (STM), our group have investigated Si surfaces, various graphenes and molecular nanolayers. In this talk, I introduce recent results on the surface related systems. All experiments have been performed at the surface science beamlines, 3A2 and 7B1, in Pohang Accelerator Laboratory, where high resolution PES (HRPES) and angle resolved PES (ARPES) are available. Metals or molecules are adsorbed and sometimes extreme ultraviolet is irradiated onto surfaces to give them special functions. I show several examples for surface functionalzation and how to characterize solid surface using the analysis techniques. In particular, lots of ARPES and STM data are provided from graphenes, a strong candidate for replacing Si and conducting oxide currently used in many electronic and optical devices.

  • PDF

Low Energy Ion-Surface Reactor

  • Choi, Won-Yong;Kang, Tae-Hee;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 1990
  • Ion-surface collision studies at low kinetic energies (1-100 eV) provide a unique opportunity for investigating reactions and collision dynamics at surfaces. A special ion optics system for generating an energy- and mass-selected ion beam of this energy is designed and constructed. An ultrahigh vacuum (UHV) reaction chamber, in which the ions generated from the beamline collide with a solid surface, is equipped with Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS) as in-situ surface analytical tools. The resulting beam from the system has the following characteristics : ion current of 5-50 nA, energy spread < 2eV, current stability within ${\pm}5%,$ and unit mass resolution below 20 amu. The performance of the instrument is illustrated with data representing the implantation behavior of $Ar^+$ into a graphite (0001) surface.

Nanocrystalline Si formation inside SiNx nanostructures usingionized N2 gas bombardment (이온화 N2 가스 입사를 이용한 SiNx 나노구조 내부의 Si 나노결정 형성)

  • Jung, Min-Cherl;Park, Young-Ju;Shin, Hyun-Joon;Byun, Jun-Seok;Yoon, Jae-Jin;Park, Yong-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.474-478
    • /
    • 2007
  • Nanostructures of $SiN_x$ were made by bombardment of ionized $N_2$ on Si surface and subsequent annealing. Atomic force micrograph showed the density of $SiN_x$ nanostructures was $3\times10^{10}/cm^2$. Their lateral size and height were 40$\sim$60 nm and 15 nm, respectively. The chemical state of the nanostructure was measured using X-ray photoelectron spectroscopy, which changed from $SiN_x$ to $Si_3N_4\;+\;SiN_x$ as the bombarding ionized gas current increases. Upon annealing, transmission electron micrograph showed a clear evidence for crystalline Si phase formation inside the $SiN_x$ nanostructures. Photoluminescence peak observed at around 400nm was thought to be originated from the interface states between the nanocrystalline Si and surrounding $SiN_x$ nanostructures.

XAS Studies of Ion Irradaited MgO Thin Films

  • Suk, Jae-Kwon;Gautam, Sanjeev;Song, Jin-Ho;Lee, Jae-Yong;Kim, Jae-Yeoul;Kim, Joon-Kon;Song, Jong-Han;Chae, Keun-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.312-312
    • /
    • 2012
  • Magnesium oxide has become focus for research activities due to its use in magnetic tunnel junctions and for understanding of do ferromagnetism. Theoretical investigations on such type of system indicate that the presence of defects greater than a threshold value is responsible for the magnetic behaviour. It has also been shown experimentally that by decreasing the film thickness and size of nanoparticles, enhancement/increase in magnetization can be achieved. Apart from the change in dimension, swift heavy ions (SHI) are well known for creating defects and modifying the properties of the materials. In the present work, we have studied the irradiation induced effects in magnesium oxide thin film deposited on quartz substrate via X-ray absorption spectroscopy (XAS). Magnesium oxide thin films of thickness 50nm were deposited on quartz substrate by using e-beam evaporation method. These films were irradiated by 200 MeV Ag15+ ion beam at fluence of $1{\times}10^{11}$, $5{\times}10^{11}$, $1{\times}10^{12}$, $3{\times}10^{12}$ and $5{\times}10^{12}ions/cm^2$ at Nuclear Science Centre, IUAC, New Delhi (India). The grain size was observed (as studied by AFM) to be decreased from 37 nm (pristine film) to 23 nm ($1{\times}10^{12}ions/cm^2$) and thereafter it increases upto a fluence of $5{\times}10^{12}ions/cm^2$. The electronic structure of the system has been investigated by X-ray absorption spectroscopy (XAS) measurements performed at the high energy spherical grating monochromator 20A1 XAS (HSGM) beamline in the National Synchrotron Radiation Research Center (NSRRC), Taiwan. Oxides of light elements like MgO/ZnO possess many unique physical properties with potentials for novel application in various fields. These irradiated thin films are also studied with different polarization (left and right circularly polarized) of incident x-ray beam at 05B3 EPU- Soft x-ray scattering beamline of NSRRC. The detailed analysis of observed results in the wake of existing theories is discussed.

  • PDF

Coherent Diffraction Imaging at PAL-XFEL

  • Kim, Sangsoo;Nam, Kihyun;Park, Jaehyun;Kim, Kwangoo;Kim, Bongsoo;Ko, Insoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.85.2-85.2
    • /
    • 2016
  • With the advent of ultra-short high-intense XFEL (X-ray Free Electron Laser), time-resolved dynamics has become of great importance in exploring femtosecond real-world phenomena of nanoscience and biology. These include studying the response of materials to femtosecond laser excitation and investigating the interaction of XFEL itself with condensed matter. A variety of dynamic phenomena have been investigated such as radiation damage, ultrafast melting process, non-equilibrium phase transitions caused by orbital-lattice-spin couplings. As far as bulk materials are concerned, the sample size has no effect on the following dynamic process. As a result, imaging information is not required by and large. If the sample size is of tens of nanometers, however, sample starts to experience quantum confinement effect which, in turn, affects the following dynamic process. Therefore, to understand the fundamental dynamic phenomena in nano-science, time-resolved imaging information is essential. In this talk, we will briefly introduce scientific highlights achieved in XFEL-based dynamics. In case of bio-imaging, recent scientific topics will be mentioned as well. Finally, we will aim to present feasible topics in ultrafast time-resolved imaging and to discuss the future plan of CXI beamline at PAL-XFEL.

  • PDF