• 제목/요약/키워드: beam-to-column connections

검색결과 483건 처리시간 0.026초

Experimental and numerical assessment of beam-column connection in steel moment-resisting frames with built-up double-I column

  • Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Ziarati, Seyed Mohsen;Mehrpour, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.315-328
    • /
    • 2018
  • Built-up Double-I (BD-I) columns consist of two hot rolled IPE sections and two cover plates which are welded by fillet welds. In Iran, this type of column is commonly used in braced frames with simple connections and sometimes in low-rise Moment Resisting Frames (MRF) with Welded Flange Plate (WFP) beam-column detailing. To evaluate the seismic performance of WFP connection of I-beam to BD-I column, traditional and modified exterior MRF connections were tested subjected to cyclic prescribed loading of AISC. Test results indicate that the traditional connection does not achieve the intended behavior while the modified connection can moderately meet the requirements of MRF connection. The numerical models of the connections were developed in ABAQUS finite element software and validated with the test results. For this purpose, moment-rotation curves and failure modes of the tested connections were compared with the simulation results. Moreover to avoid improper failure modes, some improvements of the connections were evaluated through a numerical study.

이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구 (A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms)

  • 최성모;윤여상;김요숙;김진호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.163-171
    • /
    • 2003
  • Most of existing beam-to-column connections are reinforced symmetrically because of reverse action cause by earthquake but in the weak-earthquake region like Korea connections reinforced asymmetrically can be used. Specially, the connections between CFT(Concrete Filled Tube) column and H-shape beam can be applied by simplified lower diaphragm. The tensile capacity of Combined Cross Diaphragm for upper reinforcing was tested by simple tension test and four types for lower reinforcing; Combined Cross, None, Horizontal T-bar and Vertical Plate were tested by ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat bar transmit tensile stress from bottom flange of beam to filled concrete. All test specimens were satisfied 0.01 radian of inelastic rotational requirement in ordinary moment frame of AISC seismic provision. As the results of parametric studies, simplified lower diaphragms demonstrated an outstanding strength, stiffness and plastic deformation capacity to use sufficient seismic performance in the field.

  • PDF

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.

Connections between RC beam and square tubed-RC column under axial compression: Experiments

  • Zhou, Xu-Hong;Li, Bin-Yang;Gan, Dan;Liu, Jie-Peng;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.453-464
    • /
    • 2017
  • The square tubed-reinforced concrete (TRC) column is a kind of special concrete-filled steel tube (CFST) columns, in which the outer thin-walled steel tube does not pass through the beam-column joint, so that the longitudinal steel reinforcing bars in the RC beam are continuous through the connection zone. However, there is a possible decrease of the axial bearing capacity at the TRC column to RC beam connection due to the discontinuity of the column tube, which is a concern to engineers. 24 connections and 7 square TRC columns were tested under axial compression. The primary parameters considered in the tests are: (1) connection location (corner, exterior and interior); (2) dimensions of RC beam cross section; (3) RC beam type (with or without horizontal haunches); (4) tube type (with or without stiffening ribs). The test results show that all specimens have relatively high load-carrying capacity and satisfactory ductility. With a proper design, the connections exhibit higher axial resistance and better ductility performance than the TRC column. The feasibility of this type of connections is verified.

약축 보-기둥 접합부의 경제성에 관한 연구 (A Study on the Economy of Weak-Axis Beam-to-Column Connections)

  • 박종원;강승민;오용준
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.663-670
    • /
    • 2007
  • 국내의 경우 철골 보-기둥의 접합부에 브라켓 형식이 널리 사용되고 있다. 본 연구에서는 브라켓 형식의 접합부에서 약축방향의 접합부를 대상으로 접합부의 디테일을 바꿈으로서 보다 경제적이면서 동시에 기존의 접합 디테일을 사용한 접합부와 구조적으로 유사한 성능을 발휘할 수 있는 접합부를 개발하였다. 접합 디테일을 다르게 한 4개의 접합부를 제안하고 이에 대해 경제성을 비교하였다. 또한 제안된 접합형식의 구조적 성능을 검증하기 위해 기존 접합 디테일을 포함하여 총 다섯 개의 시험체를 제작하고 이에 대한 최대내력 실험연구를 수행하였다. 4개의 제안된 접합형식 모두 기존의 접합형식에 비해 경제적인 것으로 나타났으며 최대내력 실험의 경우 한 접합형식을 제외하고 모두 보의 소성모멘트를 발휘할 수 있었으며 기존의 접합형식과 유사한 충분한 변형특성을 발휘할 수 있는 것으로 나타났다.

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

충전형 합성보와 포밍앵글 기둥 접합부의 내진성능에 대한 실험적 평가 (Experimental Evaluation on Seismic Performance of Filled Composite Beam - to - Forming Angle Composite Column Connections)

  • 김형섭;이경구;구지모
    • 한국지진공학회논문집
    • /
    • 제20권1호
    • /
    • pp.71-77
    • /
    • 2016
  • In this study, the seismic performance of connections between filled composite beam (CG beams) and forming angle composite (FAC) column was experimentally evaluated. First, the bending tests were conducted on two CG beams and the axial tests were conducted on two FAC columns. Then, based on these preliminary test results, the cyclic loading test were performed on two interior connections between CG beam and FAC column. The main difference of two specimens is the plate shape of the CG beam. The test results showed that both specimens achieved the maximum story drift capacity over 0.04 radian which is required for special moment frame.

An experimental study of the behaviour of double sided bolted billet connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.603-622
    • /
    • 2018
  • Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.

탄소 FRP를 이용한 철근콘크리트 보-기둥 접합부의 내진 성능 보강 실험 (An Experimental Study on Seismic Retrofitting of RC Beam-Column Connections with Carbon FRP)

  • 김민;이기학;이재홍;우성우;이정원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.263-266
    • /
    • 2005
  • Many RC structures built without seismic provisions have exhibited brittle shear failures in the beam-column joint area, and resulted in large permanent deformations and structural collapse. This paper presents the results of an experimental investigation pertaining to the use of carbon fiber-reinforced polymer(FRP) for strengthening of RC beam-column connections. The selective upgrade is obtained by choosing different combinations and locations of carbon FRP sheets to determine the effective way to improve the structural performance of joints. Experimental results demonstrate significant improvement of flexural capacity and ductility of beam-column connections originally built without seismic details.

  • PDF