• Title/Summary/Keyword: beam-mass systems

Search Result 112, Processing Time 0.021 seconds

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.

Coupled hydroelastic vibrations of a liquid on flexible space structures under zero-gravity - Part I. Mechanical model

  • Chiba, Masakatsu;Chiba, Shinya;Takemura, Kousuke
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.303-327
    • /
    • 2013
  • The coupled free vibration of flexible structures and on-board liquid in zero gravity space was analyzed, considering the spacecraft main body as a rigid mass, the flexible appendages as two elastic beams, and the on-board liquid as a "spring-mass" system. Using the Lagrangians of a rigid mass (spacecraft main body), "spring-mass" (liquid), and two beams (flexible appendages), as well as assuming symmetric motion of the system, we obtained the frequency equations of the coupled system by applying Rayleigh-Ritz method. Solving these frequency equations, which are governed by three system parameters, as an eigenvalue problem, we obtained the coupled natural frequencies and vibration modes. We define the parameter for evaluating the magnitudes of coupled motions of the added mass (liquid) and beam (appendages). It was found that when varying one system parameter, the frequency curves veer, vibration modes exchange, and the significant coupling occurs not in the region closest to the two frequency curves but in the two regions separate from that region.

Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response

  • Warnitchai, Pennung;Hoang, Nam
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2006
  • The optimal design of multiple tuned mass dampers (multiple TMD's) to suppress multi-mode structural response of beams and floor structures was investigated. A new method using a numerical optimizer, which can effectively handle a large number of design variables, was employed to search for both optimal placement and tuning of TMD's for these structures under wide-band loading. The first design problem considered was vibration control of a simple beam using 10 TMD's. The results confirmed that for structures with widelyspaced natural frequencies, multiple TMD's can be adequately designed by treating each structural vibration mode as an equivalent SDOF system. Next, the control of a beam structure with two closely-spaced natural frequencies was investigated. The results showed that the most effective multiple TMD's have their natural frequencies distributed over a range covering the two controlled structural frequencies and have low damping ratios. Moreover, a single TMD can also be made effective in controlling two modes with closely spaced frequencies by a newly identified control mechanism, but the effectiveness can be greatly impaired when the loading position changes. Finally, a realistic problem of a large floor structure with 5 closely spaced frequencies was presented. The acceleration responses at 5 positions on the floor excited by 3 wide-band forces were simultaneously suppressed using 10 TMD's. The obtained multiple TMD's were shown to be very effective and robust.

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.351-367
    • /
    • 2005
  • Multi-span beams carrying multiple point masses are widely used in engineering applications, but the literature for free vibration analysis of such structural systems is much less than that of single-span beams. The complexity of analytical expressions should be one of the main reasons for the last phenomenon. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-span uniform beam carrying multiple point masses. First, the coefficient matrices for an intermediate pinned support, an intermediate point mass, left-end support and right-end support of a uniform beam are derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly technique of the finite element method. Finally, the natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the related eigenfunctions respectively. The effects of in-span pinned supports and point masses on the free vibration characteristics of the beam are also studied.

Frequency and Amplitude Control of Micro Resonant Sensors (마이크로 공진형 센서의 주파수 및 진폭 제어)

  • Park, Sung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.

Study of of Flexible Multibody Dynamics with Rotary Inertia (회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구)

  • 김성수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

  • Lee, Sinyeob;Kim, Dongkyu;Ahn, Sangkeun;Park, Junhong
    • International Journal of Railway
    • /
    • v.6 no.4
    • /
    • pp.155-159
    • /
    • 2013
  • The purpose of this study was to develop a theoretical model to analyze the vibration of finite railways forced by distributed moving loads. The vibration characteristics of compliantly supported beam utilizing compressional damping model were investigated through the Rayleigh-Ritz method. The distributed moving load was analyzed as the cross correlation function on railways. This allowed the use of statistical characteristics for simulation of the moving train wheels on the rail. The results showed there is a critical velocity inducing resonant vibration of the rail. The mass spring resonance from the rail fastening systems exhibited significant influence on the resulting vibration response. In particular, the effect of the viscoelastic core damping was investigated as an efficient method for minimizing rail vibration. The decrease of the averaged vibration and rolling noise generation by the damping core was maximized at the mass-stiffness-mass resonance frequency.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Cantilever beam vibration sensor based on the axial property of fiber Bragg grating

  • Casas-Ramos, Miguel A.;Sandoval-Romero, G.E.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.625-631
    • /
    • 2017
  • In the fields of civil engineering and seismology, it is essential to detect and tracking the vibrations, and the fiber Bragg gratings (FBGs) are typically used as sensors to measure vibrations. Where, one of the most popular and detailed approaches to use FBGs as vibration sensors involves the use of cantilever beam designs, which adds a mass to measure low and moderate frequencies (from 20 Hz up to 1 kHz) with high sensitivities (greater than 10 pm/g). The design consists of a bending strain in the cantilever that is simultaneously transferred to the FBG, resulting in a shift in the wavelength that is proportional to the strain experienced by the cantilever. In this work, we present the experimental results of a vibration sensor design using a cantilever beam to generate an axial uniform strain in the FBG in-line with the vertical axis, which modifies the cantilever's natural frequency that allows the sensor to have a wide frequency broadband without losing sensitivity. This sensor achieved a sensitivity of about 339 pm/g and a natural frequency of 227.3 Hz. The presented design compared with the traditional cantilever beam-based FBG vibration sensors, has the advantages of a simple design for detection on vibration-sensitive structures and its physical parameters can be easily modified in order to satisfy the requirements of the desired vibration measurements.