• 제목/요약/키워드: beam-column joint

검색결과 508건 처리시간 0.035초

Behaviour of RC beam-column joint with varying location of construction joints in the column

  • Vanlalruata, Jonathan;Marthong, Comingstarful
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.29-38
    • /
    • 2021
  • According to ACI 224.3R-95 (ACI, 2013), construction joints (cold joint) in the column are to be provided at the top of floor slab for column continuing to the next floor and underside of floor slab and beam. A recent study reveals that providing cold joint of the mentioned location significantly reduced the seismic performance of the frame structures. Since, the construction joints in multi-story frame structures normally provided at the top of the floor slabs and at soffit of the beam in the column. This study investigated the effect of construction joint at various location in the column of beam-column joint such as at the top of floor slab, soffit level of the beam, half the depth of beam below the soffit of the beam and at a full depth of the beam below the soffit of the beam. The study revealed that there is an improvement in seismic capacity of the specimens as the location of cold joint is placed away from the soffit of the beam for lower story column.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.

Study on seismic behavior of fabricated beam-column bolted joint

  • Zhang, Yu;Ding, Kewei
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.801-812
    • /
    • 2022
  • To better promote the development of fabricated buildings, this paper studies the seismic behavior of precast concrete beam-column bolted joint under vertical low cyclic loading. The experimental results show that cracks appear in the beam-column joint core area. Meanwhile, the concrete and the grade 5.6 bolts are damaged and deformed, respectively. Specifically, the overall structure of the beam-column joint remains intact, and the bolts have good energy dissipation capacity. Based on the experimental study, a new method of beam-column bolted connection is proposed in simulation analysis. The simulation results show that the bolts deform in the core area of the new beam-column joint, which enhances the concrete shear capacity legitimately and protects the T-end of the beam against shear failure. To summarize, both the experimental joint and the simulated joint prolong the service life by replacing the bolts under the seismic loading. The research results provide a reference for applications of the fabricated beam-column joint.

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

내부 보-기둥 접합부의 전단파괴 (Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint)

  • 이민섭;홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구 (Environmental Friendly Connection of Composite Beams and Columns)

  • 홍원기;김진민;박선치;임선재
    • KIEAE Journal
    • /
    • 제7권6호
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

Experimental and numerical studies on seismic behaviour of exterior beam-column joints

  • Asha, P.;Sundararajan, R.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.221-234
    • /
    • 2014
  • A nonlinear finite element analysis using ANSYS is used to evaluate the seismic behavior of reinforced concrete exterior beam-column joints. The behavior of the finite element models under cyclic loading is compared with the experimental results. Two beam-column joint specimens (SH and SHD) with square hoop confinement in joint and throughout the column with detailing as per IS 13920 are studied. The specimen SHD was provided with additional diagonal bars from column to beam to relocate the plastic hinge formation from beam-column interface. The load-displacement relationship, joint shear stress and strain in beam obtained from numerical study showed good agreement with the experimental results. This investigation proves that seismic behaviour of reinforced concrete beam-column joints under reversed cyclic loading can be evaluated successfully using finite element modeling and analysis.

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

철골철근콘크리트 기둥-철골 보 접합부의 유효폭에 관한 실험적 연구 (Experimental Study on the Effective Joint Width of the SRC Column-Steel Beam Joint)

  • 연선아;김승훈;서수연;이리형;홍원기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.405-410
    • /
    • 2001
  • To investigate factors influencing the effective width of. SRC column-steel beam joint resisting the moment as strut, six specimens are designed and tested. Parameters in the test are column width, beam height and horizontal tie within beam depth. From the test, using either wide column width or ties, strength and stiffness of joint were developed. The lower beam height the specimens showed the lower moment.

  • PDF