• Title/Summary/Keyword: beam specimen

Search Result 757, Processing Time 0.028 seconds

AN EXPERIMENTAL STUDY ON THE ALTERATIONS OF ION-BEAM-ENHANCED ADHESIONS ON A VARIETY OF CERAMIC-METAL INTERFACES (이온선 혼합법이 도재-금속 계면 변화에 미치는 영향에 관한 실험적 연구)

  • Chung Keug-Mo;Park Nam-Soo;Woo Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.135-154
    • /
    • 1992
  • This study was performed to analyze bond strength, the alterations of the interfaces between metal films which are populary used and considered to contribute to the chemical reaction with porcelain, according to constant ion- beam- mixing, and the relation between interfacial chemical reactions and bond strength in metal/porcelain specimens. For this study, three seperate metals : selected-gold, indium and tin were chosen ; each to be bonded to a seperate body porcelain. Bonding occurs when the metal is deposited to the body porcelain using a vacuum evaporator. The vacuum evaporator used $10^{-5}\sim10^{-6}$ Torr vacuum states for the evaporation of various metals (Au, Sn, In). Ion-beam-mixing of the porcelain/metal interfaces caused reactions when the Ar+ was implanted into thin films using a 80 KeV accelerator. These ion-beam-mixed specimens were then compared with an unmixed control group. An analysis of bond strength and ionic changes between the the metal and porcelain was performed by electron spectroscopy of chemical analysis (ESCA) and scratch test. The finding led to the following conclusions : 1. Light microscopic views of the scratch test : The ion-beam-mixed Au/porcelain specimen showed narrower scratched streams than the unmixed specimen. However, the Sn/porcelain, In/porcelain specimens showed no differences in the two conditions. 2. Acoustic emissions in scratch tests : The ion-mixed Au/porcelain, In/porcelain specimens showed signals closer to the metal/porcelain interfaces than unmixed specimens. Conversely, the ion-mixed Sn/porcelain specimen showed more critical signals in superficial portions than unmixed specimens. 3. After ion- beam-mixing, the Au/porcelain specimen showed apparently increased bond strength, and the In/porcelain specimen showed very slightly increased bond strength. However, the Sn/porcelain specimen showed no differences between ion mixed specimen and the unmixed one. 4. ESCA analysis : The ion-beam-mixed Au/porcelain specimen showed a higher peak separated value (4.3eV) than that of the unmixed specimen(3.65eV), the ion-beam-mixed In/porcelain specimen showed a higher peak separated value (9.43eV) than that of the unmixed specimen(7.6eV) and the ion-beam-mixed Sn/porcelain specimen showed a higher peak separated value (8.79eV) than that of the unmixed specimen(8.5eV). 5. Interfacial changes were observed in the ion-mixed Au/porcelain, In/porcelain and Sn/porcelain specimens. Especially, significant interfacial changes were measured in the ion- mixed Sn/porcelain specimen. Tin dioxide(SnO2) and a combination of pure tin and tin dioxide (Sn+SnO2) were produced. 6. In the Au/porcelain specimen, the interfacial chemical reaction showed increased bond strength between gold and porcelain substrate. But, in the In/porcelain, Sn/porcelain specimens, interfacial chemical reactions did not affected the bond strength between metal and porcelain substrate. Especially, bonding strength on the ion mixed Sn/porcelain specimen showed the least amount of difference.

  • PDF

Volume Resistivity Characteristics of Low Density Polyethylene film irradiated with Electron Beam (전자선 조사된 저밀도 폴리에틸렌 박막의 체적고유저항 특성)

  • Cho, Don-Chan;Cho, Kyung-Soon;Lee, Soo-Won;Kim, Wang-Kon;Hong, Jin-Wooog
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.193-195
    • /
    • 1996
  • Low-density polyethylene(LDPE ; thickness 100[${\mu}m$] as a experimental specimen is irradiated with electron beam by using electron beam accelerator, and as an experimental specimen, the nonirradiated specimen and the specimen irradiated with electron beam is produced according to the classification of dose. From the analysis of DSC, the crystalline melting point of the specimen irradiated with electron beam is lower than that of virgin specimen. It is confirmed thai the volume resistivity is increased from the temperature over $50[^{\circ}C]{\sim}60[^{\circ}C]$ to the crystalline melting point because of the defects of solid structure and the formation of many trap centers by means of electron beam irradiation, but decreased in the temperature over the crystalline melting point because of the melt of crystalline.

  • PDF

Transmission Electron Microscope Specimen Preparation of Si-Based Anode Materials for Li-Ion Battery by Using Focused Ion Beam and Ultramicrotome

  • Chae, Jeong Eun;Yang, Jun Mo;Kim, Sung Soo;Park, Ju Cheol
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • A successful transmission electron microscope (TEM) analysis is closely related to the preparation of the TEM specimen and should be followed by the suitable TEM specimen preparation depending on the purpose of analysis and the subject materials. In the case of the Si-based anode material, lithium atoms of formed Li silicide were removed due to ion beam and electron beam during TEM specimen preparation and TEM observation. To overcome the problem, we proposed a new technique to make a TEM specimen without the ion beam damage. In this study, two types of test specimens from the Si-based anode material of Li-ion battery were prepared by respectively adopting the only focused ion beam (FIB) method and the new FIB-ultramicrotome method. TEM analyses of two samples were conducted to compare the Ga ion damage of the test specimen.

An Experimental Study on the Characteristics of Fiber-Reinforced Concrete Beam Without Shear Reinforcement (전단보강근이 없는 섬유보강 철근콘크리트 보의 특성에 관한 실험적 연구)

  • Kim, Jeong-Sup;Go, Song-Kyoon;Choi, Jin-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.83-90
    • /
    • 2003
  • This study examines the material characteristics of fibers and their influences on reinforced concrete through the tests of reinforced concrete by the types of fibers including non-reinforced, steel, polypropylene and cellulose fibers and the test of compressive strength and reinforced concrete beam without shear reinforcement and consequently it obtains the following conclusions. As a result of conducting compressive strength by the types of specimens, fiber reinforced specimen with the highest compressive strength value at 28 days of age was cellulose fiber reinforced specimen as 280.4kgf/$\textrm{cm}^2$ and steel fiber specimen had the highest compressive strength of 250.7kgf/$\textrm{cm}^2$ at 180 days of age. In case of non-reinforced specimen, its compressive strength was 277.4kgf/$\textrm{cm}^2$ at 28 days of age and 273.1kgf/$\textrm{cm}^2$ at 180 days of age. Comparing the compressive strength of non-reinforced specimen to that fiber reinforced specimen showed that the compressive strength of fiber reinforced specimen was lower in the passage of age and the results of this experiment showed no effects of fiber reinforcement. As a result of testing reinforced concrete beam without shear reinforcement, ductility factors of specimens were 4.67 for non-reinforced specimen, 8.18 for steel fiber reinforced specimen, 6.20 for polypropylene fiber reinforced specimen and 5.49 for cellulose reinforced specimen, and it is found that steel fiber reinforced specimen was highest. When non-reinforced specimen and steel fiber reinforced specimen were compared, steel fiber reinforced specimen had higher ductility factor of about 75.2% than that of non-reinforced specimen.

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

Experimental evaluation of steel connections with horizontal slit dampers

  • Lor, Hossein Akbari;Izadinia, Mohsen;Memarzadeh, Parham
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • This study introduces new connections that connect the beam to the column with slit dampers. Plastic deformations and damages concentrate on slit dampers. The slit dampers prevent plastic damages of column, beam, welds and panel zone and act as fuses. The slit dampers were prepared with IPE profiles that had some holes in the webs. In this paper, two experimental specimens were made. In first specimen (SDC1), just one slit damper connected the beam to the column and one IPE profile with no holes connected the bottom flange of the beam to the column. The second specimen (SDC2) had two similar dampers which connected the top and bottom flange of the beam to the column. Cyclic loading was applied on Specimens. The cyclic displacements conditions continued until 0.06 radian rotation of connection. The experimental observations showed that the bending moment of specimen SDC2 increased until 0.04 story drift. In specimen SDC1, the bending moment decreases after 0.03 story drift. Test results indicate the high performance of the proposed connection. Based on the results, the specimen with two slit damper (SDC2) has higher seismic performance and dissipates more energy in loading process than specimen SDC1. Theoretical formulas were extended for the proposed connections. Numerical studies have been done by ABAQUS software. The theoretical and numerical results had good agreements with the experimental data. Based on the experimental and numerical investigations, the high ductility of connection is obtained from plastic damages of slit dampers. The most flexural moment of specimen SDC1 occurred at 3% story drift and this value was 1.4 times the plastic moment of the beam section. This parameter for SDC2 was 1.73 times the plastic moment of the beam section and occurred at 4% story drift. The dissipated energy ratio of SDC2 to SDC1 is equal to 1.51.

Transmission Electron Microscopy Specimen Preparation for Two Dimensional Material Using Electron Beam Induced Deposition of a Protective Layer in the Focused Ion Beam Method

  • An, Byeong-Seon;Shin, Yeon Ju;Ju, Jae-Seon;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.122-125
    • /
    • 2018
  • The focused ion beam (FIB) method is widely used to prepare specimens for observation by transmission electron microscopy (TEM), which offers a wide variety of imaging and analytical techniques. TEM has played a significant role in material investigation. However, the FIB method induces amorphization due to bombardment with the high-energy gallium ($Ga^+$) ion beam. To solve this problem, electron beam induced deposition (EBID) is used to form a protective layer to prevent damage to the specimen surface. In this study, we introduce an optimized TEM specimen preparation procedure by comparing the EBID of carbon and tungsten as protective layers in FIB. The selection of appropriate EBID conditions for preparing specimens for TEM analysis is described in detail.

Effect of Anchorage Number on Behavior of Reinforced Concrete Beams Strengthened with Glass Fiber Plates

  • Kaya, Mustafa;Kankal, Zeynel Cagdas
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.415-425
    • /
    • 2015
  • Reinforced concrete beams with insufficient shear reinforcement were strengthened using glass fiber reinforced polymer (GFRP) plates. In the study, the effect of the number of bolts on the load capacity, energy dissipation, and stiffness of reinforced concrete beams were investigated by using anchor bolt of different numbers. Three strengthened with GFRP specimens, one flexural reference specimen designed in accordance to Regulation on Buildings Constructed in Disaster Areas rules, and one shear reinforcement insufficient reference specimen was tested. Anchorage was made on the surfaces of the beams in strengthened specimens using 2, 3 and 4 bolts respectively. All beams were tested under monotonic loads. Results obtained from the tests of strengthened concrete beams were compared with the result of good flexural reference specimen. The beam in which 4 bolts were used in adhering GFRP plates on beam surfaces carried approximately equal loads with the beam named as a flexural reference. The amount of energy dissipated by strengthened DE5 specimen was 96 % of the amount of energy dissipated by DE1 reference specimen. Strengthened DE5 specimen initial stiffness equal to DE1 reference specimen initial stiffness, but strengthened DE5 specimen yield stiffness about 4 % lower than DE1 reference specimen yield stiffness. Also, DE5 specimen exhibited ductile behavior and was fractured due to bending fracture. Upon the increase of the number of anchorages used in a strengthening collapsing manner of test specimens changed and load capacity and ductility thereof increased.

An Experimental Study on Seismic Performance of Reinforced Concrete Beam-Column Retrofitted with Replaceable Steel Haunch System (교체 가능한 강재 헌치 시스템으로 보강한 철근 콘크리트 보-기둥 구조물의 내진성능에 관한 실험적 연구)

  • Kim Yoon Sung;Kim Min Sook;Lee Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2024
  • The purpose of this study is to experimentally analyze the seismic performance of beam-column specimens with vertical irregular, which were reinforced with RHS (Replaceable steel haunch system). a steel haunch system. To evaluate the seismic performance of the RHS, three specimens were manufactured and subjected to cycle loading tests. Retrofitted specimens have different beam-upper column stiffness ratio as a variable. The stiffness ratio of beam-upper column were considered to be 1.2 and 0.84. As a result of the test, the specimen reinforced with RHS showed improved maximum load and effective stiffness, and energy dissipation capacity compared to the non-retrofitted specimen with same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance than the specimen with 12.

Creation of Electron Beam Probe in Scanning Electron Microscopy (주사 전자 현미경에서 전자빔 프르브 생성)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.52-57
    • /
    • 2008
  • Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lenes and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. Backscattered electron provide an useful signal for composition and local specimen surface inclination. Secondary electron is used far the formation of surface imagination. The steady electron beam probe is very important for the imagination formation and the brightness. In this paper, we show the results of developed elements that create electron beam probe and the measured beam probe in various acceleration voltages by Faraday cup. These data are used to analysis and improve the performance of the system in the development.