• 제목/요약/키워드: beam selection

검색결과 165건 처리시간 0.027초

X선촬영시(X線撮影時) 피사체(被寫體) 두께에 따른 격자비(格子比) 선정(選定)에 관한 연구(硏究) (Studios in Selected Grid Ratio of Objective Thickness on X-ray Exposure)

  • 윤철호;추성실;허준
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제5권1호
    • /
    • pp.21-34
    • /
    • 1982
  • When unattenuated x-ray radiation passes through the object it is transmitted and scattered from objectes and impinging on the film. During this process certain radiation is absorbed within the object and others transmitted in reduced scattering. The scattering radiation influence upon radiation image quality, confining x-ray beam which means scattering radiation produce increased fog on x-ray film image and as a consequence decrease contrast and less detail of the film there for the elimination of fog and for absorbing scattered radiation, the grid has been used between the object and the film in order to rid of scattering rays. Using grid is good method for the qualification of the better image as well as in using air gap technique. The grid is easy to manipulate and promote good efficiency which is defined by ICRU and JIS. It is the purpose to study for eliminating scattered radiation from the tissue equivalent acryl phantom using grid, we have studied and evaluated the grid permeability about the x-ray exposure, the selection of grid ratio according to phantom thickness, on x-ray exposure are performed as follows. 1. The penetrating ratio of primary x-ray is remarkably decreased by increasing of the grid ratio, but it is almost not influenced in KVP difference and phantom thickness. 2. The scattered radiation is proportionaly increased by thickness of the phantom, having nothing to do with grid ratios. 3. The relative between the penetration rate of primary and secondary x-ray is improved by increasing grid ratio, and decreased by phantom thickness, and slightly decreased by high tube voltage. 4. The grid of 5:1 and 10:1 ratio are adequate to the phantom of 10cm and 15cm thickness, respectively.

  • PDF

비정질 평판형 측정기를 이용한 디지털 흉부 방사선 영상에서의 효과적인 관전압 선택 (The Effect of X-ray Tube Potential on the Image Quality of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors)

  • 김정민;임은경
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제28권4호
    • /
    • pp.273-277
    • /
    • 2005
  • 디지털 의료 영상의 빠른 발전은 새로운 기술-비정질 평판형 측정기-에 대한 최적의 기술이 동행되지 못했다. 이번 실험으로 비정질 평판형 측정기를 사용한 흉부 방사선 영상의 대한 환자선량과 영상의 화질에 대하여 비교하였다. 모든 실험은 비정질 평판형 측정기를 사용하였다. 흉부 팬텀을 사용한 흉부 방사선영상은 관전압 $60{\sim}150\;kVp$에서 획득하였다. 이번 실험을 통하여 획득된 비정질 평판형 측정기를 사용한 X-선 에너지에 대한 영상의 질과 환자선량에 관련된 정보들을 보고한다. 이 정보는 비정질 평판형 측정기를 사용한 시스템에서 최적의 관전압의 선정에 효과적인 정보를 제공하며, 특히 일반적인 흉부 검사에 적용될 수 있을 것이다.

  • PDF

모드 선택성을 강화한 비접촉식 유도초음파 기술 (Non-Contact Guided Wave Technique with Enhanced Mode-Selectivity)

  • 김현묵;이태훈;장경영
    • 비파괴검사학회지
    • /
    • 제24권6호
    • /
    • pp.597-602
    • /
    • 2004
  • 유도초음파의 현장적응에 있어 전파모드를 규명하는 것은 매우 어렵지만 중요한 과제이다. 본 연구에서는 분산성이 적은 단일모드를 발생시키고 검출할 수 있는 기법에 대해 다루고 있으며, 현장 적용성과 자동화를 위해 비접촉식의 기법을 적용하였다. 모드 선택성을 강화한 비접촉식의 유도초음파 기법으로는 선배열 슬릿을 이용한 레이저빔을 이용하였으며, 에어커플 변환기를 수신자로 사용하였다. 선배열의 레이저 조명은 파장과 일치하여 특정한 모드를 발생시킬 수 있다 또한, 에어커플 변환기는 공기 중으로 누설되는 유도초음파를 수신각도를 조절하여 선택적으로 모드를 수신할 수 있다. 1mm 두께의 알루미늄 판에 덕 기법을 적용한 실험결과로부터 제안하는 기법의 유용성을 검증하였고, 특히 단일한 $a_0$모드의 발생 및 수신에 효과적인 기법으로 나타났다.

넓은 범위의 힘/모멘트비를 갖는 3분력 힘/모멘트 센서 설계 (Design of 3-component Force/Moment Sensor with Force/Moment Ratio of Wide Range)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.214-221
    • /
    • 2001
  • This paper describes the design of 3-component force/moment sensor with the force and moment ratio of wide range. It can measure the x-direction force Fx, y-direction force Fy and z-direction moment Mz simultaneously. In order to accurately measure forces and moment using 3-component force/moment sensor, it should get suitable force and moment ratio(the ratio of force Fx=200 N and moment Mz=20 Nm is ten to one), and small interference error. In this paper, in order to design the 3-component force/moment sensor with the force and moment ratio of wide range, the procedures are performed as follow : 1) the derivation of the equations to predict the bending strains on the surfaces of the plate-beams under the force or the moments, 2) the determination of the size of the sensing elements of the force/moment sensor by using the derived equations, 3) the Finite Element Method(FEM) analysis and the characteristic test for confirming the strains from the theory analysis, 4) the selection of the attachment locations of the strain gages of each sensor, 5) the analysis of the rated strain and the interference error at the attachment location of strain gages. It reveals that the rated strains calculated from the derived equations make a good agreement with the results from the Finite Element Method analysis and the characteristic test.

  • PDF

영건의궤(營建儀軌)에 실린 목부재용어(木部材用語)의 용례(用例)와 변천(變遷)에 관(關)한 연구(硏究) (A study on the examples and changes of wooden member terms in Yeonggeon-euigwe)

  • 김재웅;이봉수
    • 건축역사연구
    • /
    • 제17권5호
    • /
    • pp.71-94
    • /
    • 2008
  • This study examines the examples and changes of wooden member terms in Yeonggeon-euigwe(營建儀軌) in the era of Joseon Dynasty. As a result of examining examples, about 240 wood member terms were found on the basis of phonetic value and examples different from today's term use were also confirmed. Wood member terms were derived in variety and synonym and different style, that is, coexistence or transition of several notations as the term indicating the same member was found. Derivation of detail terms has the characteristic increasing on the basis of morpheme and formation of different notation followed Chinese notation or was caused by complex coinage features like a coined word of Korea by the meaning of a word and borrowed character notation borrowing sound and it is also related to the specificity of that time which had dual language system. The typical examples without different style for long were pillar, rafter, door and window. Examples with active generation and selection of different styles included beam, capital and bracket-system terms. Different styles were caused by the combination of several notations including borrowed character in the process of Chinese character notation borrowing sound, Korean unique character emphasizing and limiting combination of 木 (wood) with side of character and Chinese. Period showing remarkable change of example notation was the compilation of ${\ll}$the Hwa-Sung-Sung-Euk-Eui-Gue${\gg}$ 華城城役儀軌. ${\ll}$the Hwa-Sung-Sung-Euk-Eui-Gue${\gg}$ is the representative type uigwe made by printed type not by handicraft. Printing by type accompanies unification of the shape of a character necessarily and it was considered that it resulted in the unification of character of different style, the number of strokes and minute difference of strokes, and it was interpreted that common use of intentional notation with the unification of the shape of a character was achieved.

  • PDF

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • 제11권4호
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.

개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계 (Fuzzy Optimum Design of Plane Steel Frames Using Refined Plastic Hinge Analysis and a Genetic Algorithm)

  • 이말숙;윤영묵;손수덕
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.147-160
    • /
    • 2006
  • 본 논문에서는 개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계 방법을 제시하였다. 개선소성힌지해석에서는 강골조 구조물의 기하학적 비선형성을 고려하기 위해 보-기둥 요소의 안정함수를 사용하였으며, 재료적 비선형을 고려하기 위해 잔류응력, 소성힌지, 그리고 기하학적 불완전성 등에 의한 점진적인 강성감소모델을 사용하였다. 유전자 알고리듬에서는 토너먼트 선택방법과 마이크로 유전자 알고리즘을 사용하였다. 목적함수로는 구조물의 총중량을 사용하였으며, 제약조건으로는 하중-저항능력, 사용성, 연성도, 그리고 시공성에 관한 기준을 고려하였다. 퍼지최적설계에서는 명확한 목적함수와 퍼지제약을 가지는 경우에 한하여 허용 오차는 제한값의 5%로 선택하고 비소속함수와 레벨컷 방법을 이용하여 0에서 1까지 0.2간격으로 나누어 최적화하였다. 여러 평면 강골조 구조물의 최적설계를 수행하여 일반GA최적설계와 퍼지GA최적설계의 최적값을 비교하였다.

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Analytical and experimental investigation of stepped piezoelectric energy harvester

  • Deepesh, Upadrashta;Li, Xiangyang;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.681-692
    • /
    • 2020
  • Conventional Piezoelectric Energy Harvesters (CPEH) have been extensively studied for maximizing their electrical output through material selection, geometric and structural optimization, and adoption of efficient interface circuits. In this paper, the performance of Stepped Piezoelectric Energy Harvester (SPEH) under harmonic base excitation is studied analytically, numerically and experimentally. The motivation is to compare the energy harvesting performance of CPEH and SPEHs with the same characteristics (resonant frequency). The results of this study challenge the notion of achieving higher voltage and power output through incorporation of geometric discontinuities such as step sections in the harvester beams. A CPEH consists of substrate material with a patch of piezoelectric material bonded over it and a tip mass at the free end to tune the resonant frequency. A SPEH is designed by introducing a step section near the root of substrate beam to induce higher dynamic strain for maximizing the electrical output. The incorporation of step section reduces the stiffness and consequently, a lower tip mass is used with SPEH to match the resonant frequency to that of CPEH. Moreover, the electromechanical coupling coefficient, forcing function and damping are significantly influenced because of the inclusion of step section, which consequently affects harvester's output. Three different configurations of SPEHs characterized by the same resonant frequency as that of CPEH are designed and analyzed using linear electromechanical model and their performances are compared. The variation of strain on the harvester beams is obtained using finite element analysis. The prototypes of CPEH and SPEHs are fabricated and experimentally tested. It is shown that the power output from SPEHs is lower than the CPEH. When the prototypes with resonant frequencies in the range of 56-56.5 Hz are tested at 1 m/s2, three SPEHs generate power output of 482 μW, 424 μW and 228 μW when compared with 674 μW from CPEH. It is concluded that the advantage of increasing dynamic strain using step section is negated by increase in damping and decrease in forcing function. However, SPEHs show slightly better performance in terms of specific power and thus making them suitable for practical scenarios where the ratio of power to system mass is critical.

Grain size, crystalline phase and fracture toughness of the monolithic zirconia

  • Bocam, Kodchakorn;Anunmana, Chuchai;Eiampongpaiboon, Trinuch
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.285-293
    • /
    • 2022
  • PURPOSE. This study evaluated the relationship among translucency, crystalline phase, grain size, and fracture toughness of zirconia. MATERIALS AND METHODS. Four commercial zirconia - Prettau®Anterior® (PA), Prettau® (P), InCorisZI (ZI), and InCorisTZI (TZI)- were selected for this study. The bar specimens were prepared to determine fracture toughness by using chevron notched beam method with four-point bending test. The grain size was evaluated by a mean linear intercept method using a scanning electron microscope. X-ray diffraction and Rietveld refinement were performed to evaluate the amount of tetragonal and cubic phases of zirconia. Contrast ratio (CR) was measured to investigate the level of translucency. RESULTS. PA had the lowest fracture toughness among other groups (P < .05). In addition, the mean fracture toughness of P was significantly less than that of ZI, but there was no difference compared with TZI. Regarding grain size measurement, PA had the largest average grain size among the groups. P obtained larger grain size than ZI and TZI (P < .05). However, there was no significant difference between ZI and TZI. Moreover, PA had the lowest CR value compared with the other groups (P < .05). This means PA was the most translucent material in this study. Rietveld refinement found that PA presented the greatest percentage of cubic phase, followed by TZI, ZI, and P, respectively. CONCLUSION. The different approaches are used by manufacturers to fabricate various types of translucent zirconia with different levels of translucency and mechanical properties, which should be concerned for material selection for successful clinical outcome.