• Title/Summary/Keyword: beam finite element model

Search Result 938, Processing Time 0.041 seconds

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

Dynamic Analysis of External Fuel Tank and Pylon Using Stick Model (스틱모델을 이용한 외부연료탱크 및 파일런 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Chan;Park, Sung Hwan;Choi, Hyun-Kyung;Hong, Seung Ho;Ha, Byung Kun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Aircraft should be equipped with various external stores for mission performance. Since these external stores may cause structural instability of aircraft, an evaluation of the effects between the aircraft and the external stores is required. For this purpose, an aircraft dynamic characteristics analysis reflecting an external store was performed, and the finite element model for the analysis of aircraft dynamic characteristics should simulate the dynamic characteristics of the component as accurately as possible while using a minimum of the nodes and elements. In this study, a stick model was constructed for dynamic characteristics analysis of the external fuel tank and installation pylon using MSC Patran/Nastran. For the calculation of the equivalent stiffness of the stick model, a simple beam theory was applied to construct the stick model of each part, and the validity of each stick models was confirmed by mode comparison with the fine model. Additionally, the model analysis of the stick model assembly, simulating a pylon equipped with an external fuel tank was performed to confirm that the basic modes required for the analysis of aircraft dynamic characteristics are well extracted. Finally, it was confirmed that the developed stick model assembly could be used for analysis of aircraft dynamic characteristics by comparing the errors in modes between the fine model assembly and the stick model assembly.

Analytical Study on the Prying Action Force and Axial Tensile Stiffness of High-Strength Bolts Used in an Unstiffened Extended End-Plate Connection (비보강 확장단부판 접합부에 체결된 고장력볼트의 지레작용력 및 축방향 인장강성에 대한 해석적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.251-260
    • /
    • 2015
  • The end plate connection is applied to beam-column moment connections in various forms. Such end plate connection displays changes in the behavioral characteristics, strength and stiffness, and energy dissipation capacity based on the thickness and length of the end plate, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, prying action force of the high strength bolt, and dimensions and length of the welds. Accordingly, this study has apprehended the axial tensile stiffness and prying action force of the high strength bolt connected on the tensile side based on the difference in thickness of the end plate, and was conducted to propose an analysis model for the prediction of such variables that affect the operating properties of the end plate. To achieve this, this study has conducted a three-dimensional non-linear finite-element analysis of the unstiffened expanding end plate connection by selecting only the thickness of the end plate as the variable.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.

Convergence Study on Damage of the Bonded Part at TDCB Structure with the Laminate Angle Manufactured with CFRP (CFRP로 제작된 적층각도를 가진 TDCB 구조물에서의 접착부의 파손에 관한 융합 연구)

  • Lee, Dong-Hoon;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.175-180
    • /
    • 2018
  • In this study, CFRP was manufactured with the laminate angle of $45^{\circ}$. The specimen of TDCB bonded with the adhesive for structure was designed by CATIA and the analysis was progressed by using the finite element analysis program of ANSYS. This study model was designed on the basis of British industry and ISO standard and the configuration factor(m) was established with variable according to the angle of model configuration. As the study result of this paper, the maximum deformations at the specimens with the tapered angles of $4^{\circ}$ and $8^{\circ}$ become most as 12.628 mm and least as 12.352mm respectively. Also, the maximum equivalent stresses at the specimens with the tapered angles of $6^{\circ}$ and $8^{\circ}$ become most as 9210.3 MPa and least as 4800.5 MPa respectively. The damage data of TDCB structure with the laminate angle which was manufactured with CFRP could be secured through this study result. As the damage data of TDCB structure bonded with CFRP obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Stress analysis of Multiloop Edgewise Arch Wire with various degree of tip back bend : a study using the finite element method (Multiloop Edgewise Arch Wire의 tip back 정도에 따른 응력 분포에 관한 유한요소법적 연구)

  • Lee, Young-Il;Cha, Kyung-Suk;Ju, Jin-Won;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.127-142
    • /
    • 2000
  • This study have been carried out to find out the mechnical effect of Multiloop Edgewise Arch Wire(MEAW) making use of the finite element method. The tip back bend of MEAW taken in this analysis is $5^{\circ},\;10{\circ}\;and\;15{\circ}$. In addition, Class II or up & down elastic is applied to find out stress distribution and their values in PDL. A adult male of normal occlusion was selected to create the models of teeth and PDL. And the model of MEAW was also created using commercial finite element code (ANSYS version 5.2). The MEAW is forcibly engaged with a class II or up & down elastic, to determine the initial stress generated in PDL. Comparing the compressive and tensile stress at each reference-planes, following results are obtained. 1. When a MEAW of $5^{\circ},\;10{\circ}\;15{\circ}$ tip back bend was engaged with Class II or up & down elastic, the distribution of compressive, tensile stress in entire PDL is similar in each case. 2. The values of compressive and tensile stress in PDL is higher in $15{\circ}$ tip back bend case than in $10{\circ}\;or\;15{\circ}$ tip back bend case. 3. In the distal PDL of 1st and 2nd molar, compressive stress appears. The compressive area is more wide and its values is higher in PDL of 2nd molar than those in 1st molar. The compressive area and its values become more wide and higher according to the increase of the tip back bend. 4. The values of compressive stress are comparatively smaIIer in PDL of molars than those in premolars. 5. Comparing class II and up & down elastic case, tensile stress values in anterior teeth PDL are smaller md their distribution is more wide in up & down elastic case than class If elastic case. On another hand, there is no difference in distribution and stress values in PDL of posterior teeth between two cases. 6. Comparing the tensile area in PDL of anterior teeth, tensile stress values are maximum in PDL of canine.

  • PDF

Analysis on the Hydroelasticity of Whole Ship Structure by Coupling Three-dimensional BEM and FEM (3차원 경계요소법과 전선 유한요소 해석의 연성을 통한 전선 유탄성 해석)

  • Kim, Kyong-Hwan;Bang, Je-Sung;Kim, Yong-Hwan;Kim, Seung-Jo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.312-326
    • /
    • 2012
  • This paper considers a fully coupled 3D BEM-FEM analysis for the ship structural hydroelasticity problem in waves. Fluid flows and structural responses are analyzed by using a 3D Rankine panel method and a 3D finite element method, respectively. The two methods are fully coupled in the time domain using a fixed-point iteration scheme, and a relaxation scheme is applied for improve convergence. In order to validate the developed method, numerical tests are carried out for a barge model. The computed natural frequency, motion responses, and time histories of stress are compared with the results of the beam-based hydroelasticity program, WISH-FLEX, which was thoroughly validated in previous studies. This study extends to a real-ship application, particularly the springing analysis for a 6500 TEU containership. Based on this study, it is found that the present method provides reliable solutions to the ship hydroelasticity problems.

Development and implementation of a knowledge based TBM tunnel segment lining design program (지식기반형 TBM 터널 세그먼트 라이닝 설계 프로그램의 개발 및 적용)

  • Jeong, Yong-Jun;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.321-339
    • /
    • 2014
  • This paper concerns the development of a knowledge-based tunnel design system within the framework of artifical neural networks(ANNs). The system is aimed at expediting a routine tunnel design works such as computation of segment lining body forces and stability analysis of selected cross section. A number of sub-modules for computation of segment lining body forces and stability analysis were developed and implemented to the system. It is shown that the ANNs trained with the results of 3D numerical analyses can be generalized with a reasonable accuracy, and that the ANN based tunnel design concept is a robust tool for tunnel design optimization. The details of the system architecture and the ANNs development are discussed in this paper.

Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor (터보 압축기 다단 회전축계의 진동 및 안정성 연구)

  • Seo, Jung-Seok;Kang, Sung-Hwan;Park, Sang-Yoon;An, Chang-Gi;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

Seismic response analysis of steel frames with post-Northridge connection

  • Mehrabian, Ali;Haldar, Achintya;Reyes-Salazar, Alfredo
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.271-287
    • /
    • 2005
  • The seismic behavior of two steel moment-resisting frames, which satisfy all the current seismic design requirements, are evaluated and compared in the presence of pre-Northridge connections denoted as BWWF and an improved post-Northridge connections denoted as BWWF-AD. Pre-Northridge connections are modeled first as fully restrained (FR) type. Then they are considered to be partially restrained (PR) to model their behavior more realistically. The improved post-Northridge connections are modeled as PR type, as proposed by the authors. A sophisticated nonlinear time-domain finite element program developed by the authors is used for the response evaluation of the frames in terms of the overall rotation of the connections and the maximum drift. The frames are excited by ten recorded earthquake time histories. These time histories are then scaled up to produce some relevant response characteristics. The behaviors of the frames are studied comprehensively with the help of 120 analyses. Following important observations are made. The frames produced essentially similar rotation and drift for the connections modeled as FR type and PR type represented by BWWF-AD indicating that the presence of slots in the web of beams in BWWF-AD is not detrimental to the overall response behavior. When the lateral displacements of the frames are significantly large, the responses are improved if BWWF-AD type connections are used in the frames. This study analytically confirms many desirable features of BWWF-AD connections. PR frames have longer periods of vibration in comparison to FR frames and may attract lower inertia forces. However, calculated periods of the frames of this study using FEMA 350 empirical equation is longer than those calculated using dynamic characteristics of the frames. This may result in even lower design forces and may adversely influence the design.