• Title/Summary/Keyword: beam finite element model

Search Result 938, Processing Time 0.028 seconds

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

A Fundamental Study on Evaluation of Web Crippling Strength of Corroded H-Beams (부식 H형 강재의 복부좌굴강도 추정에 관한 기초적 연구)

  • Kim, In-Tae;Shin, Chang-Hee;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.421-433
    • /
    • 2010
  • The most typical deterioration of steel structures is corrosion damage. However, a method to evaluate residual load-carrying capacity of corroded steel structures is not yet established. It is difficult to check current serviceability and safety of the structures. In this study, compressive tests and finite element analyses were conducted on H-beams with corroded web. Then, the effect of corrosion damage on web crippling strength and evaluation methods of the web crippling strength are studied. Based on the tests, 4 H-beam specimens used in a subway construction site and 9 H-beam specimens with different web-thickness and damaged-height underwent compression-tests. To consider loading and supporting areas in the site, compressive loading was applied in the entire region of the upper and bottom flange in 5 H-beam specimens and applied partially on the regions of the upper and bottom flange in 8 specimens. The finite element analysis of 38 parametric model specimens simulating different corrosion damages was also carried out. From experimental and analytical results, the relationships between corrosion damages in the web and residual web crippling strength are presented. Factors web crippling strength was reduced are formulated by using residual average thickness and the standard deviation of the corroded web thickness. Also, a simple evaluation method of residual web crippling strength was proposed.

Evaluation of the Energy Dissipation Capacity of an Unstiffened Extended End-plate Connection (비보강 확장단부판 접합부의 에너지소산능력 평가)

  • Lee, Soo Kueon;Yang, Jae Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2015
  • An extended end-plate connection displays different behavioral properties and energy dissipation capacity based on the thickness and length of the end-plate comprising the connection in the form of a beam-to-column moment connection, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, and the size and length of the welds. Such extended end-plate is applied to beam-to-column connections in various geometric forms in the US and European regions. Currently in Korea, however, the extended end-plate beam-to-column connection is not actively applied due to the lack of proper design formulas, the evaluation of the energy dissipation capacity, and the provision of construction guidelines. Accordingly, this study was conducted to provide the basic data for the proposal of a prediction model of energy dissipation capacity by evaluating the energy dissipation capacity of unstiffened extended end-plate connections with relatively thin end plate thicknesses. To achieve this, a three-dimensional nonlinear finite element analysis has been conducted on unstiffened extended end-plate connections, with the thickness of the end plate as the set variable.

An Analytical Study on Composite Beam Performance with Post-Fire Temperature Using ANSYS Program (ANSYS를 이용한 화재 후 온도에 따른 합성보 성능에 관한 해석적 연구)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.391-400
    • /
    • 2019
  • In the case of fire, a structure loses its original stiffness due to the temperature rise, and the load bearing capacity decreases. The loss of structural strength increases with increasing fire time of the structure. To prevent the collapse of buildings, it is very important to understand whether or not the members are damaged. On the other hand, there is insufficient data to be a guideline for diagnosing and evaluating the residual strength of the members in Korea. Therefore, this study examined the resistance performance by Finite-Element-Analysis of composite beams, which are composite structures among structural members. Composite beam modeling was carried out based on the model used in the Electrical Penetration Room (EPR) in cooperation with KEPCO. The heat transfer analysis and structural analysis of the critical phase were performed using ANSYS, a finite element analysis program. ANSYS was used to perform heat transfer analysis and structural analysis at the static analysis. To analyze the residual performance, the temperature distribution of the composite beam and the maximum displacement result of the heat-affected structure analysis were derived and the experimental data and the structural analysis result data were compared and analyzed.

Collapse of steel cantilever roof of tribune induced by snow loads

  • Altunisik, Ahmet C.;Ates, Sevket;Husem, Metin;Genc, Ali F.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • In this paper, it is aimed to present a detail investigation related to structural behavior of laterally unrestrained steel cantilever roof of tribune with slender cross section. The structure is located in Tutak town in $A{\breve{g}}r{{\i}}$ and collapsed on October 25, 2015 at eastern part of Turkey is considered as a case study. This mild sloped roof structure was built from a variable I beam, and supported on steel columns of 5.5 m height covering totally $240m^2$ closed area in plan. The roof of tribune collapsed completely without any indication during first snowfall after construction at midnight a winter day, fortunately before the opening hours. The meteorological records and observations of local persons are combined together to estimate the intensity of snow load in the region and it is compared with the code specified values. Also, the wide/thickness and height/thickness ratios for flange and web are evaluated according to the design codes. Three dimensional finite element model of the existing steel tribune roof is generated considering project drawings and site investigations using commercially available software ANSYS. The displacements, principal stresses and strains along to the cantilever length and column height are given as contour diagrams and graph format. In addition to site investigation, the numerical and analytical works conducted in this study indicate that the unequivocal reasons of the collapse are overloading action of snow load intensity, some mistakes made in the design of steel cantilever beams, insufficient strength and rigidity of the main structural elements, and construction workmanship errors.

A Study on the Computational Analysis of 355nm UV Laser Multiple-Pulsed Micro Machining Considering the Strain Rate Effect (변형률 속도 효과를 고려한 355nm UV 레이저 다중 펄스 미세가공의 전산해석에 관한 연구)

  • Lee, Jung-Han;Oh, Jae-Yong;Park, Sang-Hu;Nam, Gi-Jung;Ryu, Gwang-Hyun;Shin, Suk-Hun;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.29-33
    • /
    • 2010
  • UV laser micromachining of metallic materials has been used in microelectronic and other industries. This paper shows on experimental investigation of micromachining of copper using a 355nm UV laser with 50ns pulse duration. A finite element model with high strain rate effect is especially suggested to investigate the phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. In order to consider the strain rate effect, Cowper-Symonds model was used. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, a commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computational simulation of the UV laser micro machining behavior for thin copper material. From these computational results, depth of the dent (from one to six pulsed) were observed and compared with previous experimental results. This will help us to understand interaction between UV laser beam and material.

Effect of fiber volume fraction on the tensile softening behavior of Ultra High Strength Steel Fiber-Reinforced Concrete (섬유혼입률이 초고강도 강섬유 보강 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Lee, Si-Young;Park, Gun;Hong, Sung-Wook;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.421-424
    • /
    • 2008
  • Ultra high strength steel fiber-reinforced concrete is characterized with high tensile strength and ductility. This paper revealed the influence of fiber volume fraction on the tensile softening behaviour of ultra high strength steel fiber-reinforced concrete and developed tensile softening model to predict the deformation capacity by finite element method analysis with experimental results. The initial stiffness of ultra high strength steel fiber-reinforced concrete was constant irrespective of fiber volume fraction. The increase of fiber volume fraction improved the flexural tensile strength and caused more brittle softening behaviour. Finite element method analysis proposed by Uchida et al. was introduced to obtain the tensile softening curve from three point notched beam test results and we proposed the tensile softening model as a function of fiber volume fraction and critical crack width.

  • PDF

Finite Element Analysis to Determine Shear Behavior of Prestressed Concrete Deep Beams (유한요소법을 이용한 프리스트레스트 콘크리트 깊은 보의 전단 거동 해석)

  • Jin, Hui-Jing;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.165-172
    • /
    • 2019
  • In this study, the shear strength of prestressed concrete deep beams is predicted using finite element analysis, and the variation in the shear strength according to the degree of prestressing is investigated. Numerical analysis results are compared with results obtained by the strut-and-tie model and associated experiments. Numerical analyses are performed on prestressed concrete deep beams with different values of concrete strength, effective prestress, ratio of tensile reinforcement, and shear span to effective depth ratio. The shear strength predicted by the numerical analysis is similar to the experimental value obtained, with an error of less than 5%. However, the strut-and-tie model highly overestimated the shear strength of prestressed concrete deep beams with a concentrated loading area. The ultimate shear capacity of prestressed concrete deep beams increased linearly with increasing prestresss applied to the tendon.

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

On the dynamic behavior of functionally graded cracked beams resting on winkler foundation under moving load

  • Alaa A. Abdelrahman;Mohamed Ashry;Amal E. Alshorbagy;Mohamed A. Eltaher;Waleed S. Abdalla
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.169-194
    • /
    • 2024
  • Although the excellent characteristics of functionally graded materials (FGMs) cracks could be found due to manufacturing defects or extreme working conditions. The existence of these cracks may threaten the material or structural strength, reliability, and lifetime. Due to high cost and restrictions offered by practical operational features these cracked components couldn't be replaced immediately. Such circumstances lead to the requirement of assessing the dynamic performance of cracked functionally graded structural components especially under moving objects. The present study aims to comprehensively investigate the dynamic behavior of functionally graded cracked Timoshenko beams (FGCTBs) resting on Winkler foundation and subjected to moving load through shear locking free finite elements methodology. The through thickness material distribution is simulated by the exponential gradation law. The geometric discontinuity due to cracks is represented using the massless rotational spring approach. The shear locking phenomena is avoided by using the different interpolation functions orders for both deflections and rotations. Based on Timoshenko beam element, a shear locking free finite elements methodology is developed. The unconditionally stable Newmark procedure is employed to solve the forced vibration problem. Accuracy of the developed procedure is verified by comparing the obtained results with the available results and an excellent agreement is found. Parametric studies are conducted to explore effects of the geometrical, material characteristics, crack geometrical characteristics, the elastic foundation parameter, and the moving load speed on the dynamic behavior for different boundary conditions. Obtained results revealed the significant effect these parameters on the dynamic performance of FGCTBs.