• Title/Summary/Keyword: beam finite element model

Search Result 938, Processing Time 0.029 seconds

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

Vibration analysis of a multi-span beam subjected to a moving point force using spectral element method

  • Jeong, Boseop;Kim, Taehyun;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, we propose a frequency domain spectral element method (SEM) for the vibration analysis of a multi-span beam subjected to a moving point force. This study is an extension of the authors' previous study for a single-span beam subjected to a moving point force, where the two-element model-based SEM was applied. In this study, each span of a multi-span beam is represented by the Timoshenko beam model and the moving point force is transformed into the frequency domain as a series of each stationary point force distributed on the multi-span beam. The span at which a stationary point force is located is represented by two-element model, but all other spans are represented by one-element models. The vibration responses to a moving point force are obtained by superposing all individual vibration responses generated by each stationary point force. The high accuracy and computational efficiency of the proposed SEM are verified by comparing the solutions by SEM with exact analytical solutions by the integral transform method (ITM) as well as the solutions by the finite element method (FEM).

Spectral Element Analysis of an Axially Moving Thermoelastic Beam (축 방향으로 이동하는 열 탄성 보의 스펙트럴요소해석)

  • 김도연;권경수;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics may provide very accurate solutions, together with drastically reducing the number of degrees of freedom to improve the computation efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam which axially moves with constant speed under a uniform tension. The accuracy of the spectral element model is then evaluated by comparing the natural frequencies obtained by the present element model with those obtained by the conventional finite element model.

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

A study on the Modeling and Dynamic Analysis of Cracked Beam Structures (균열이 있는 보의 모델링 및 동적 해석에 관한 연구)

  • 홍성욱;김만달;이종원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the inconvenience and numerical errors in association with re-meshing the structural model with the crack position changed. The proposed modeling method is validated through a series of simulation and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, two kinds of experiments are performed to validate the proposed modeling method. Finally, a diagnostic scheme fur open cracked beam structures is proposed and demonstrated through a numerical example.

Spectral Element Modeling of an Extended Timoshenko Beam Based on the Force-Displacement Relations (힘-변위 관계를 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링)

  • Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Verification of Finite Element Model for Composite Lattice Structures through Natural Frequency Test (고유진동수 시험을 통한 복합재 격자구조체의 유한요소모델 검증)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.832-834
    • /
    • 2017
  • In this paper, the finite element models for composite lattice structures were verified through natural frequency test. Finite element models of composite lattice structure were generated using beam, shell and solid element. Natural frequencies were measured using impact test method under free-boundary condition. The natural frequencies of finite element analysis for shell and solid element showed a good agreement with experimental results. But beam element did not show a good agreement with experimental results, because beam element could not consider the degradation of mechanical properties of non-intersection parts for composite lattice structure.

  • PDF

Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation

  • Nguyen, Tuan Ngoc;Kim, Nam-Il;Lee, Jaehong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.137-146
    • /
    • 2017
  • The size-dependent behavior of single walled carbon nanotubes (SWCNT) embedded in the elastic medium and subjected to the initial axial force is investigated using the mixed finite element method. The SWCNT is assumed to be Euler-Bernoulli beam incorporating nonlocal theory developed by Eringen. The mixed finite element model shows its great advantage of dealing with nonlocal behavior of SWCNT subjected to a concentrated load owing to the existence of two coefficients ${\alpha}_1$ and ${\alpha}_2$. This is the first numerical approach to deal with a puzzling fact of nonlocal theory with concentrated load. Numerical examples are performed to show the accuracy and efficiency of the present method. In addition, parametric study is carefully carried out to point out the influences of nonlocal effect, the elastic medium, and the initial axial force on the behavior of the carbon nanotubes.