• Title/Summary/Keyword: beam finite element model

Search Result 938, Processing Time 0.025 seconds

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

A spatial displacement model for horizontally curved beams

  • Jiang, Z.G.;Luo, Q.Z.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.151-157
    • /
    • 2003
  • A new approach to the analysis of horizontally curved beams is presented in this paper. The proposed method simplifies a two-dimensional structure into a one-dimensional structure just like a normal beam for structural analysis and, therefore, reduces the computational effort significantly.

Arc-length and explicit methods for static analysis of prestressed concrete members

  • Mercan, Bulent;Stolarski, Henryk K.;Schultz, Arturo E.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.17-37
    • /
    • 2016
  • This paper compares the arc-length and explicit dynamic solution methods for nonlinear finite element analysis of prestressed concrete members subjected to monotonically increasing loads. The investigations have been conducted using an L-shaped, prestressed concrete spandrel beam, selected as a highly nonlinear problem from the literature to give insight into the advantages and disadvantages of these two solution methods. Convergence problems, computational effort, and quality of the results were investigated using the commercial finite element package ABAQUS. The work in this paper demonstrates that a static analysis procedure, based on the arc-length method, provides more accurate results if it is able to converge on the solution. However, it experiences convergence problems depending upon the choice of mesh configuration and the selection of concrete post-cracking response parameters. The explicit dynamic solution procedure appears to be more robust than the arc-length method in the sense that it provides acceptable solutions in cases when the arc-length approach fails, however solution accuracy may be slightly lower and computational effort may be significantly larger. Furthermore, prestressing forces must be introduced into the finite element model in different ways for the explicit dynamic and arc-length solution procedures.

Finite element and design code assessment of reinforced concrete haunched beams

  • Gulsan, Mehmet Eren;Albegmprli, Hasan M.;Cevik, Abdulkadir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.423-438
    • /
    • 2018
  • This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced Concrete Haunched Beams (RCHBs). Firstly, twenty RCHBs, consisting of three types, and four prismatic beams which had been tested experimentally were modeled via a nonlinear finite element method (NFEM) based software named as, ATENA. The modeling results were compared with experimental results including load capacity, deflection, crack pattern and mode of failure. The comparison showed a good agreement between the results and thus the model used can be effectively used for further studies of RCHB with high accuracy. Afterwards, new mechanism modes and design code equations were proposed to improve the shear design equation of ACI-318 and to predict the critical effective depth. These equations are the first comprehensive formulas in the literature involving all types of RCHBs. The statistical analysis showed the superiority of the proposed equation to their predecessors where the correlation coefficient, $R^2$ was found to be 0.89 for the proposed equation. Moreover, the new equation was validated using parametric and reliability analyses. The parametric analysis of both experimental and predicted results shows that the inclination angle and the compressive strength were the most influential parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

Deformational characteristics of a high-vacuum insulation panel

  • Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.245-262
    • /
    • 2000
  • The objective of this study is to analyze the deformational characteristics of a high-vacuum insulation panel that is evacuated to eliminate significant gas-phase conductance through its thickness. The panel is composed of a metal envelope and low thermal conductance spacers. The problem is very challenging because several nonlinearities are involved concurrently. Not only are various finite element models such as triangular, rectangular, beam and circular plate models used to simulate the panel, but also several finite element programs are used to solve the problem based on the characteristics of the finite element model. The numerical results indicate that the effect of the diameter of the spacer on the vertical deformation of the plate panel is negligibly small. The parameter that mainly influences the maximum sag is the spacing between the spacers. The maximum vertical deformation of the panel can be predicted for a practical range of the spacing between the spacers and the thickness of the plate. Compared with the numerical results obtained by the finite element models and the experimental tests, they have a good agreement. The results are represented in both tabular and graphical forms. In order to make the results useful, a curve fitting technique has been applied to predict the maximum deformation of the panel with various parameters. Moreover, the panel was suggested to be a "smart" structure based on thermal effect.

Three-dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Man;Kim, Yu-Sung;Kim, Myung-Kuk;Chen, Seung-Bae;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.105-113
    • /
    • 2007
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

Dynamic analysis of a porous microbeam model based on refined beam strain gradient theory via differential quadrature hierarchical finite element method

  • Ahmed Saimi;Ismail Bensaid;Ihab Eddine Houalef
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.133-159
    • /
    • 2023
  • In this paper, a size-dependent dynamic investigation of a porous metal foams microbeamsis presented. The novelty of this study is to use a metal foam microbeam that contain porosities based on the refined high order shear deformation beam model, with sinusoidal shear strain function, and the modified strain gradient theory (MSGT) for the first time. The Lagrange's principle combined with differential quadrature hierarchicalfinite element method (DQHFEM) are used to obtain the porous microbeam governing equations. The solutions are presented for the natural frequencies of the porous and homogeneoustype microbeam. The obtained results are validated with the analytical methods found in the literature, in order to confirm the accuracy of the presented resolution method. The influences of the shape of porosity distribution, slenderness ratio, microbeam thickness, and porosity coefficient on the free vibration of the porous microbeams are explored in detail. The results of this paper can be used in various design formetallic foammicro-structuresin engineering.

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

Stability and Vibration of Non-Uniform Timoshenko Beams resting on Two-Parameter Elastic Foundations (두 파라메타 탄성기초위에 놓인 불균일 Timoshenko보의 안정성과 진동)

  • Lee, Jong-Won;Ryu, Bong-Jo;Lee, Gyu-Seop;Kong, Yong-Sik;Oh, Bu-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.596-601
    • /
    • 2000
  • The paper presents free vibration and stability analyses of a non-uniform Timoshenko beam resting on a two-parameter elastic soil. The soil parameters can vary along the spat and is assumed to be two-parameter model including the effects of both transverse shear deformation and elastic foundation Governing equations related to the vibration and the stability of the beam are derived from Hamilton's principle, and the resulting eigen-value problems can be solved to give natural frequencies and critical force by finite element method. Numerical results for both vibration and stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies, mode shapes and critical forces are investigated for various thickness ratios, shear foundation parameter, Winkler foundation parameter and boundary conditions of tapered Timoshenko beams.

  • PDF