• Title/Summary/Keyword: beam bridge

Search Result 620, Processing Time 0.23 seconds

Strengthen Effect of RC Beam Overlaid or Repaired by VES-LMC (초속경 라텍스개질콘크리트로 덧씌우기 및 보수된 철근콘크리트보의 보강효과)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Choi, Seung-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • VES-LMC (very-early strength latex-modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid or repaired could be opened to the traffic after 3 hours of curing. Although the field performance of VES-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, little quantitative data or research results have been presented in the literature on structural studies. The purpose of this study was to investigate the flexural behavior, interfacial performance, crack propagation, and strengthen effect of RC beam overlaid or repaired by VES-LMC through the 4-point flexural loading test. Two different types of RC beam were fabricated for repair and rehabilitation types. The test result showed that the strengthen effect, in term of flexural stiffness, increases as the depth of repair or overlay increases. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 80 mm and 120 mm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or overlaid beams had a little relative displacement. This means that two materials behave comparatively acting together. However, there were two specimens which had large displacement at the interface, because of poor bond strength. This suggested that interface treatment is one of the most important jobs in composite beams.

Stud and Puzzle-Strip Shear Connector for Composite Beam of UHPC Deck and Inverted-T Steel Girder (초고성능 콘크리트 바닥판과 역T형 강거더의 합성보를 위한 스터드 및 퍼즐스트립 전단연결재에 관한 연구)

  • Lee, Kyoung-Chan;Joh, Changbin;Choi, Eun-Suk;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Since recently developed Ultra-High-Performance-Concrete (UHPC) provides very high strength, stiffness, and durability, many studies have been made on the application of the UHPC to bridge decks. Due to high strength and stiffness of UHPC bridge deck, the structural contribution of top flange of steel girder composite to UHPC deck would be much lower than that of conventional concrete deck. At this point of view, this study proposes a inverted-T shaped steel girder composite to UHPC deck. This girder requires a new type of shear connector because conventional shear connectors are welded on top flange. This study also proposes three different types of shear connectors, and evaluate their ultimate strength via push-out static test. The first one is a stud shear connector welded directly to the web of the girder in the transverse direction. The second one is a puzzle-strip type shear connector developed by the European Commission, and the last one is the combination of the stud and the puzzle-strip shear connectors. Experimental results showed that the ultimate strength of the transverse stud was 26% larger than that given in the AASHTO LRFD Bridge Design Specifications, but a splitting crack observed in the UHPC deck was so severe that another measure needs to be developed to prevent the splitting crack. The ultimate strength of the puzzle-strip specimen was 40% larger than that evaluated by the equation of European Commission. The specimens combined with stud and puzzle-strip shear connectors provided less strength than arithmetical sum of those. Based on the experimental observations, there appears to be no advantage of combining transverse stud and puzzle-strip shear connectors.

Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges (사장교의 케이블 초기장력 및 기준길이 결정에 관한 연구)

  • Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.137-146
    • /
    • 2005
  • This study presents the shape iteration method and the updated Lagrangian methods to calculate the initial tension and the reference length of cables of cable-stayed bridges. The girders and towers of cable-stayed bridge are modelled as 3-dimensional frame elements and the cable as nonlinear truss element or Ernst's cable element. Compared with the initial tensions of cables by finite element method in this study and by trial-and error method in practices, the tensions by the former are shown to be a little less than the those by the latter. The reference lengths of cables by Ernst's cable elements are almost consistent with those of cables by nonlinear truss elements. And the reference length of cables in this study are almost consistent with the arc length of beam with the same initial tension. Therefore the reference lengths of cables in cable-stayed bridges are shown to be obtained simply by the theory of beam with the initial tension calculated in this study.

Forecast on Internal Condensation at Balcony Ceiling of Super-high Apartment Building Faced with Open Air (외기에 면한 초고층 아파트 발코니 천정 내부결로 예측)

  • Choi Yoon-Ki;Ahn Jae-Bong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.155-163
    • /
    • 2003
  • There are a growing number of cases to expand balconies of apartments faced with open air in order to enhance functional satisfaction and efficiency of dwelling space. In case of the balcony expansion at the floor, however, it is difficult to exclude a possibility of bringing about internal condensation due to the difference of temperature between indoor air and outdoor air caused by the Inflow of outer low-temperature air through the upper part of ceilings by failure in completely putting together the outer composite wall panels on the aluminum curtain walls installed at outer walls This study is to forecast possible occurrence of internal condensation around parapets and H-beam located at the inside of balcony ceilings on the uppermost floor of super-high apartment buildings faced with open air in order to provide dwellers with more comfortable environment in the related space and get rid of their uneasiness about the condensation. In this study, we estimated internal condensation, which vary in accordance with humidity pressure distribution, at curtain walls, stone panels or lower parts of slabs that constitute outer space of the residence and are weak against heat, through temperature forecast and temperature distribution interpretation program at normal two-dimension temperature

Improved Damage Assessment Algorithm Using Limited Mode Shapes (제한된 모드형상을 이용한 개선된 손상평가 알고리즘)

  • 이종순;조효남;허정원;이성칠
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.127-136
    • /
    • 2002
  • This papers presents a practical damage detection algorithm based on damage index method that accurately assesses both the location and severity of the localized detriment in a bridge structure using only limited mode shapes. In the algorithm, the ratio of the modal vector sensitivity of an undamaged structure to that of a damaged structure is used as an indicator of damage. However, a difficulty arises when the damaged element is located at a node of mode where the amplitude of medal vector is close to zero, leading the singularity of the ratio (i.e., division-by-zero). This singularity problem is overcome by introducing a parameter denoted a sensitivity filter, a function of mode shape of the structure, in modal vector sensitivity. Using this concept, an improvement can be considerably achieved in the estimation of both degree of severity and location of damage. To verify the proposed algorithm, its numerical implementations are conducted for a simply supported beam and a 2-span continuous beam.

Effect of Geometric Shapes on Stability of Steel Cable-stayed Bridges (기하형상에 따른 강사장교의 안정성에 관한 연구)

  • Kim, Seung-Jun;Han, Seung-Ryong;Kim, Jong-Min;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.13-27
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the beam-column effect of the girder and mast, and the large displacement effect. In this analytic research, a nonlinear frame element and a nonlinear equivalent truss element were used to model the girder, mast, and cable member. The live-load cases that were considered in this research were assumed based on the traffic loads. To perform reasonable analytic research, initial shape analyses in the dead-load case were performed before live-load analysis. In this study, the geometric nonlinear responses of the cable-stayed bridges with different cable arrangement types were compared. After that, parametric studies on the characteristics of the structural stability in critical live-load cases were performed considering various geometric parameters, such as the cable arrangement type, the stiffness ratios of the girder and mast, the area of the cables, and the number of cables. Through this parametric study, the effect of geometric shapes on the structural stability of cable-stayed bridges was investigated.

Comparison of Limit Strength of Steel Cable-Stayed Bridges using Nonlinear Inelastic Displacement and Buckling Analyses (비선헝 비탄성 유한변위 해석 및 좌굴해석에 의한 강사장교의 극한강도 비교)

  • Kim Sung-Eock;Choi Dong-Ho;Ma Sang-Soo;Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.277-289
    • /
    • 2005
  • The study examines the limit strength for steel cable-stayed bridges. A case studies have been performed in order to evaluate the limit strength lot steel cable-stayed bridges using nonlinear inelastic analysis approach and bifurcation point instability analysis approach, effective tangent modulus $(E_f)$ method. To realize it, a practical nonlinear inelastic analysis condoling the initial shape is developed. In the initial shape analysis, updated structural configuration is introduced instead of initial member forces for beam-column members at every iterative step. Geometric and material nonlinearities of beam-column members are accounted by using stability function, and by using CRC tangent modulus and parabolic function, respectively Besides, geometric nonlinearity of cable members is accounted by using secant value of equivalent modulus of elasticity. The load-displacement relationships obtained by the proposed method are compared well with those given by other approaches. The limit strengths evaluated by the proposed nonlinear inelastic analysis for the proposed cable-stayed bridges with tee dimensional configuration compared with those by the inelastic bifurcation point instability analyses.

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Stress Distribution in Construction Joint of Prestressed Concrete Bridge Members with Tendon Couplers (고강도 철근콘크리트 보-기둥 외부 접합부의 전단 거동에 관한 실험)

  • Park Ki-Choul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.535-542
    • /
    • 2005
  • Two series of experiments on the performance of beam-column joints in High-Strength Reinforced concrete frames were carried out. Main experimental parameters were : concrete strength, column axial load and amount of joint hoop reinforcement. Test result showed that the ultimate shear strength of exterior joints increased of column axial compressive force and the amount of the joint hoop reinforcements. Through the regression analysis on the 24data, the following equation is obtained $jv_u=(2.935{\times}10-3\;{\rho}jw{\cdot}fy\;+\;0.365){\sqrt{f_{ck}}}$

Application of Artificial Neural Network Model for Environmental Load Estimation of Pre-Stressed Concrete Beam Bridge (PSC Beam교 환경부하량 추정을 위한 인공신경망 모델 적용 연구)

  • Kim, Eu Wang;Yun, Won Gun;Kim, Kyong Ju
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.82-92
    • /
    • 2018
  • Considering that earlier stage of construction project has a great influence on the possibility of lowering of environmental load, it is important to build and utilize system that can support effective decision making at the initial stage of the project. In this study, we constructed an environmental load estimation model that can be used at the early stage of the project using basic design factors. The model was constructed by using the artificial neural network to estimate environmental load by applying to planning stage (ANN-1), basic design stage (ANN-2). The result of test, shows that average of absolute measuring efficiency and standard deviation of ANN-1 and ANN-2 were 11.19% / 5.30% and 9.59% / 3.09% each. This result indicates that the model using the input variables extended with the project progress has high reliability and it is considered to be effective in decision support at the initial design stage of the project.