• Title/Summary/Keyword: beam bridge

Search Result 620, Processing Time 0.026 seconds

Analysis and Design of Approach Bridge Pile Cap in Incheon Bridge Project (인천대교 접속교 파일캡의 해석과 설계)

  • Song, Jong-Young;Shin, Hyun-Yang;Choi, Kyu-Yong;Song, Chang-Hee;Lee, Tae-Yeol;Shim, Ih-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.221-224
    • /
    • 2006
  • For structural engineers, design of pile cap causes difficulties since design of this member is not specifically addressed by codes. In general, pile cap is considered as deep beam and designed for shear and moment at specified critical section. This is called as traditional section method. However, many international design codes suggest the application of strut tie method for better design of this member. In this paper, a brief application of strut tie method to the design check of pile cap structure designed by section method is presented. Unlike well known pile cap with single column, the example pile cap has two columns. In order to find out proper load path under various load condition, three dimensional finite element method was carried out. The result indicates that provided reinforcement by traditional section method has sufficient capacity to meet the design requirements.

  • PDF

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

Distribution of Wheel Loads on Curved Steel Box Girder Bridges (곡선 강상자형교의 윤하중 분배)

  • Kim, Hee-Joong;Lee, Si-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In the case of horizontally curved bridges, the use of curved composite box girder bridges are increased due to its functionality and for aesthetical reason. As it compared with the open section, the steel box girder bridges have advantages to resistant of distortion and corrosion. In practice the grid analysis is conducted by utilizing only the cross beam. Since the stiffness of the concrete slab is not included in the grid analysis, the cross beam is induced the distribution of the live load. In this study the affects of the radius of curvature, the number of diaphragm and cross beam to the load distribution of the curved steel box girder bridge was investigated by applying the finite element method. The results indicate that the curvature of curved bridge had a large affect of the load distribution and as the curvature was increased the load distribution factor was increased. A single diaphragm at the center of girder is important role for the load distribution effects and structural stability, but additional diaphragm did not affect it as much. The affects of the cross beam to the load distribution were investigated and its influence was minor. It can be safely concluded that the addition of cross beam does not aid the purpose of the live load distribution. And the stiffness of concrete slab for the load distribution effects should be concerned in the design of curved steel box girder bridges.

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge (공용 사장교의 동적특성을 반영하는 버페팅 응답보정법)

  • Kim, Byeong Cheol;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.

Characteristic of Local Behavior in Orthotropic Steel Deck Bridge with Open Ribs according to Running Vehicle (주행차량에 따른 개단면 강바닥판 교량의 국부거동 특성)

  • Lee, Sung-Jin;Kyung, Kab-Soo;Park, Jin-Eun;Lee, Hee-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • The orthotropic steel deck bridge made by using relatively thin steel plate, and structural members such as transverse and longitudinal ribs, cross beam, etc. in the bridge are fabricated with complex shape by welding. Therefore, the possibility occurring deformation and defects by welding is very high, and stress states in the welded connection parts are very complex. Also, the fatigue cracks in orthotropic steel deck bridge are happening fromthe welded connection parts of secondary member than main member. However, stress evaluation for main members is mainly carried out in the design process of the bridge, detailed stress evaluation and characteristic analysis is not almost reviewed in the structural details which fatigue crack occurred. For the orthotropic steel deck bridge with open ribs which has been serviced for 29 years, in this study, the cause of fatigue crack is investigated and the fatigue safety of the bridge is examined based on fieldmeasurement by the loading test and real traffic condition. Also, structural analyses using gridmodel and detailed analysis model were carried out for the welded connection parts of longitudinal rib and diaphramthat fatigue crack occurred. Additionally, the behavior characteristics due to running vehicles were investigated by using influence area analysis for these structural details, and the occurrence causes of fatigue crack in the target bridge were clarified.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Stiffened Effect of Knee Brace of Cross-Beam in Steel Box-girder Bridges (강박스거더교 가로보 니브레이스(Knee Brace)의 보강효과)

  • Gil, Heung Bae;Jang, Gab Chul;Kang, Sang Gyu;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.227-234
    • /
    • 2009
  • Recently, a knee brace is usually installed in connection between cross-beam and main-girder of steel box-girder bridges. The knee brace is installed as a structural stiffener and mainly aims to relieve stress at joints and to prevent main-girder from lateral deformation. However, research on the knee brace is insufficient to obviously evaluate the necessity. The stiffened effect of knee brace is determined by using finite element analyses. Stress distribution, stress level of members and deflection of the cross-beam are evaluated by parametric FE analysis for the installation of knee brace and the depth ratio of cross-beam/steel box girder. It is seen from comparison of numerical analysis results that the knee brace installed in cross-beam of steel boxgirders bridges is not efficient as a structural stiffener with respect to stress relief and stiffened effect.

A Reliability Analysis considering the Second Composite Effect in the To-Box Reinforcement of Deteriorated PSC Beam Bridge (PSC Beam의 박스형 보강 시 이차합성을 고려한 신뢰성해석)

  • Han Sung-Ho;Cho Chang-Joo;Bang Myung-Seok;Shin Jae-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.400-407
    • /
    • 2005
  • The reinforcing effect of modified structure of PSC beams is analyzed in this study. The PSC beams are closed by precast half panels embeding PS tendons at the bottom flange of I-bear The stiffness of box structure is larger and the PS force at half panels makes a time-dependent upward camber of superstructures. The superstructure becomes a second composite structure among 3 elements-PSC ben RC slab, PSC Panel. The time-dependent creep and shrinkage effect at PSC Panels and structural behavior is verified considering construction sequences. The optimal range of to-box reinforcing method is surveyed through reliability analysis.

  • PDF

The Efficiency of 3D Design in the PSC Beam Bridge (PSC Beam 교에서의 3D 설계 효용성)

  • Shin, Wook-Beom;Ahn, Do-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.104-107
    • /
    • 2008
  • A case study is conducted by between using 3D integrated automatic design software(ABeamDeck, AAbutPier) and using autocad without program to validate the method. As a result, there are many profits introducing the 3D design in the construction, especially, to make up for defect of existing design method. 3D design will enhance the efficiency of construction tasks by supporting a system of sharing and exchanging information throughout all the stages of construction, from design, production and installation to maintenance.

  • PDF

Design and fabrication of micro force sensor using MEMS fabrication technology (MEMS 제작기술을 이용한 미세 힘센서 설계 및 제작)

  • 김종호;조운기;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.497-502
    • /
    • 2002
  • This paper describes a design methodology of a tri-axial silicon-based farce sensor with square membrane by using micromachining technology (MEMS). The sensor has a maximum farce range of 5 N and a minimum force range of 0.1N in the three-axis directions. A simple beam theory was adopted to design the shape of the micro-force sensor. Also the optimal positions of piezoresistors were determined by the strain distribution obtained from the commercial finite element analysis program, ANSYS. The Wheatstone bridge circuits were designed to consider the sensitivity of the force sensor and its temperature compensation. Finally the process for microfabrication was designed using micromachining technology.

  • PDF