• Title/Summary/Keyword: beam bridge

Search Result 620, Processing Time 0.03 seconds

The Design Of PSC U-Girder (Song-Lim Gyo) In Korean Railway (철도교량의 하로 PSC U거더교 설계적용사례)

  • Cho Sun-Kyu;Kwon Soon- Sup;Kim Sun-Kon;Lee Jong-Shin;Lee Jong-Min
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.545-551
    • /
    • 2006
  • Along with the steady development of Korean Railway construction technology, Contemporary society needs more modernized structures which can meet not only structural value but also aesthetic and environmental value. To follow this demand of society, Pre-Stressed Concrete U-girder bridge(Somg-Lim Gyo, L=330m) is introduced in 'JINJOO-KWANGYANG RAILWAY CONSTRUCTION PROJECT'. On the environmental point of view, the huge noise due to the operation of train can be reduced remarkably by the side beam of U-girder which is high enough to substitute soundproofing wall. Moreover, by aesthetic variation of the shape of outer beams and coping of piers, the exterior view of the bridge can be improved and in accordance with surroundings. Pre-Stressed Concrete U-Girders which are built up above the outer sides of slab deck make easier to secure the clearance of a bridge and make it possible to lower the distance of centroid between superstructure and railroad tracks.

  • PDF

A study on the design and fabrication of electrostatically actuatedRF MEMS switches (정전 구동형 RF MEMS 스위치의 설계 및 제작에 관한 연구)

  • Park, Jae-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.320-327
    • /
    • 2010
  • In this paper, electrostatically actuated direct contact type RF MEMS switches have been designed and demonstrated. As driving structures of the switch, cantilever, bridge, and torsion spring beam structures are used and the actuation voltage characteristics of the switches have been compared and discussed. The designed RF switches are fabricated with the surface micromachining technology using the electroplated gold and nickel structures. The characteristics of the fabricated switches are measured and analyzed. The switch, which is fabricated using the 510 ${\mu}m$-length bridge structure with the thickness of 1.5 ${\mu}m$, is actuated with 15 V driving voltage. The insertion losses are less than 0.2 dB over the measured frequency ranges from 0 to 20 GHz and the isolations are more than 30 dB.

A Study on the Load Carrying Capacity of the RC-T Bridge considering depth of crack (RC-T 교량의 균열을 고려한 내하력평가 연구)

  • Shim, Jae-Soo;Kim, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • Recently, many existing bridges has been evaluated for maintenance and protection of collapse. In this study, field measurement according to truck loads tests on the reinforce concrete T beam bridge was carried out. Comparing the results of load test and structural analysis using the moments of inertia of gross section, crack section and effective section, and the moments of inertia of section considering depth of crack, it is conclude that the evaluation of load carrying capacity using the stress modification factor from structural analysis using the moments of inertia of gross section is more rational than using the other moments of inertia of sections.

  • PDF

Isogeometric analysis of gradient-enhanced damaged plasticity model for concrete

  • Xu, Jun;Yuan, Shuai;Chen, Weizhen
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.171-188
    • /
    • 2019
  • This study proposed a new and efficient 2D damage-plasticity model within the framework of Isogeometric analysis (IGA) for the geometrically nonlinear damage analysis of concrete. Since concrete exhibits complicated material properties, two internal variables are introduced to measure the hardening/softening behavior of concrete in tension and compression, and an implicit gradient-enhanced formulation is adopted to restore the well-posedness of the boundary value problem. The numerical results calculated by the model is compared with the experimental data of three benchmark problems of plain concrete (three-point and four-point bending single-notched beams and four-point bending double-notched beam) to illustrate the geometrical flexibility, accuracy, and robustness of the proposed approach. In addition, the influence of the characteristic length on the numerical results of each problem is investigated.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.

The Effect of Design Parameter on the Beam Depth of IPC Girder Continuous Bridge (교량설계 변수가 IPC 거더 연속교의 형고에 미치는 영향)

  • 한만엽;김보형;김상완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.125-130
    • /
    • 2001
  • A existing design method of PSC girder bridges, according to total service loads, stress required tendon force at a time. Because this design method increases beam depth, design of long span is difficult. However, As UC girder stressing at difficult loading stages reduces sectional depth of PSC girder, both design and operation of long span bridges is possible. so, this study analyzes the effect of design parameter (Girder Strength, Girder Spacing, Span Length, Joint Strength) on the beam depth of IPC girder continuous bridges, and shows sectional depth of UC girder for design of long span bridges. According to analysis, when a continuous bridges of same length span is at strength of joint over strength of girder of 600kg/$cm^{2}$, a change of beam depth is observed and when a continuous bridges of different span length is at strength of joint below strength of girder of 600kg/$cm^{2}$, a change of beam depth is observed. In two case, a change of beam depth is mostly observed over strength of girder of 350kg/$cm^{2}$ according to analysis of deflection data, a continuous bridges of IPC girder is nearly satisfied.

  • PDF

The Effect of Moving Mass on Resonance Phenomenon and Natural Frequency of a Simply Supported Beam (이동질량을 고려한 단순지지된 교량의 진동수 및 공진현상 분석)

  • Min, Dong-Ju;Jung, Myung-Rag;Park, Sung-Min;Kim, Moon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2016
  • The purpose of this study is to investigate the influence of moving mass on the vibration characteristics and the dynamic response of the simply supported beam. The three types of the moving mass(moving load, unsprung mass, and sprung mass) are applied to the vehicle-bridge interaction analysis. The numerical analyses are then conducted to evaluate the effect of the mass, spring and damper properties of the moving mass on natural frequencies and dynamic responses of the simply supported beam. Particularly, in the case of the sprung mass, variations of the natural frequency of simply supported beam are explored depending on the position of the moving mass and the frequency ratio of the moving mass and the beam. Finally the parametric studies on the resonance phenomena are performed with changing mass, spring and damper parameters through the dynamic interaction analyses.

Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis

  • Liu, T.T.;Xu, Y.L.;Zhang, W.S.;Wong, K.Y.;Zhou, H.J.;Chan, K.W.Y.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.479-504
    • /
    • 2009
  • Structural health monitoring (SHM) systems have been recently embraced in long span cable-supported bridges, in which buffeting-induced stress monitoring is one of the tasks to ensure the safety of the bridge under strong winds. In line with this task, this paper presents a SHM-oriented finite element model (FEM) for the Tsing Ma suspension bridge in Hong Kong so that stresses/strains in important bridge components can be directly computed and compared with measured ones. A numerical procedure for buffeting induced stress analysis of the bridge based on the established FEM is then presented. Significant improvements of the present procedure are that the effects of the spatial distribution of both buffeting forces and self-excited forces on the bridge deck structure are taken into account and the local structural behaviour linked to strain/stress, which is prone to cause local damage, are estimated directly. The field measurement data including wind, acceleration and stress recorded by the wind and structural health monitoring system (WASHMS) installed on the bridge during Typhoon York are analyzed and compared with the numerical results. The results show that the proposed procedure has advantages over the typical equivalent beam finite element models.

Time-domain coupled analysis of curved floating bridge under wind and wave excitations

  • Jin, Chungkuk;Kim, MooHyun;Chung, Woo Chul;Kwon, Do-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.399-414
    • /
    • 2020
  • A floating bridge is an innovative solution for deep-water and long-distance crossing. This paper presents a curved floating bridge's dynamic behaviors under the wind, wave, and current loads. Since the present curved bridge need not have mooring lines, its deep-water application can be more straightforward than conventional straight floating bridges with mooring lines. We solve the coupled interaction among the bridge girders, pontoons, and columns in the time-domain and to consider various load combinations to evaluate each force's contribution to overall dynamic responses. Discrete pontoons are uniformly spaced, and the pontoon's hydrodynamic coefficients and excitation forces are computed in the frequency domain by using the potential-theory-based 3D diffraction/radiation program. In the successive time-domain simulation, the Cummins equation is used for solving the pontoon's dynamics, and the bridge girders and columns are modeled by the beam theory and finite element formulation. Then, all the components are fully coupled to solve the fully-coupled equation of motion. Subsequently, the wet natural frequencies for various bending modes are identified. Then, the time histories and spectra of the girder's dynamic responses are presented and systematically analyzed. The second-order difference-frequency wave force and slowly-varying wind force may significantly affect the girder's lateral responses through resonance if the bridge's lateral bending stiffness is not sufficient. On the other hand, the first-order wave-frequency forces play a crucial role in the vertical responses.

Dynamic Response of Steel Plate Girder Bridges by Numerical Dynamic Analysis (동적해석에 의한 강판형교의 동적응답)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.39-49
    • /
    • 2008
  • Dynamic responses of steel plate girder bridges considering road surface roughness of bridge and bridge-vehicle interaction are investigated by numerical analysis. Simply supported steel plate girder bridges with span length of 20 m, 30 m, and 40 m from "The Standardized Design of Highway Bridge Superstructure" published by the Korean Ministry of Construction are used for bridge model and the road surface roughness of bridge decks are generated from power spectral density(PSD) function for different road. Three different vehicles of 2- and 3-axle dump trucks, and 5-axle tractor-trailer(DB-24), are modeled three dimensionally. For the bridge superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. Impact factor and DLA of steel plate girder bridges for different spans, type of vehicles and road surface roughnesses are calculated by the proposed numerical analysis model and compared with those specified by several bridge design codes.