• 제목/요약/키워드: beam analysis

검색결과 6,245건 처리시간 0.033초

대칭단헝 단순보의 등가보 변환에 의한 고유치 해석 (Eigenvalue Analysis of Symmetrically Stepped Beams by Equivalent Beam Transformation)

  • 정재철;문상필
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.55-62
    • /
    • 2006
  • 보의 고유진동수는 보의 동적해석에서 중요한 역할을 한다. 보의 단면이 불규칙적으로 변하는 단형보의 고유진동수 산정은 해석상 복잡하고 어렵다. 이런 단형보의 해석은 주로 다자유도계 해석인 질량집중방법이 널리 사용되지만 이들 해석방법은 요소의 분할수나 계산의 반복수 또는 가정처짐곡선의 정확성 여부에 해석의 정밀성이 좌우된다. 본 연구는 대칭단형 단순보의 등가보 변환 방법과 그에 따른 고유치해석 방법을 제시하였으며 타 문헌의 예제와 여러 모델을 대상으로 그 타당성 및 실용성을 입증하였다.

Project level에서의 철도 PC Beam교량의 경년열화모델구성 및 유지관리비용 추정 (Time-Dependent Degradation Model and Maintenance Cost of Rail line PC Beam Bridge in Project Level)

  • 권세곤;박미연;도정윤;김두기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2008
  • Construction project have extremely high risk in the process of construction owing to unexpected event, like as design amendment. As a result, owner have to endure enormous extra-cost to control the risk and continue to the project having more higher uncertainty. Also, if the structure is completed, it is needed that the structure is protected and maintained continuously during life cycle time to satisfying original aim of structure itself. LCC analysis to calculate cost of structure alternatives divides into two stage, one is design_LCC and the other is maintenace_LCC. But two stages all is needed in the transition deterioration model to calculate more reasonable LCC analysis. This paper developed the model using analysis of FMS contents and survey from professional about Prestressed concrete beam girder bridge(PC Beam bridge)in railway. The model is focused in project level of PC beam because any condition state information for element level analysis can not get up. This paper is intended to use the developed model in LCC analysis of PC Beam bridge in railway and constitute the foundation to perform more deep study in the near future.

  • PDF

장경간 건축구조를 위한 하이브리드 OCB보의 개발 (Development of Hybrid OCB Beam for the Long-span Building Structures)

  • 이두성;김상연;김태균
    • 토지주택연구
    • /
    • 제6권3호
    • /
    • pp.129-138
    • /
    • 2015
  • 최근 국내의 건축구조는 공간활용을 극대화할 수 있도록 계획되고 있다. 공간활용의 장점을 실현하기 위하여 하이브리드 OCB(Optimized Composite Beam)보를 개발하였다. 본 논문에서 개발된 건축용 OCB보는 부모멘트 구간에서는 노출강연선으로 보강된 H형강으로 구성되고 정모멘트 영역에서는 프리텐션 방식의 PSC 구조로 구성된다. 본 연구에선 유한요소법을 이용하여 건축용 OCB보의 휨성능을 조사하였다. 15m, 20m, 30m 길이의 OCB모형을 구성하여 재료 및 기하학적 비선형 정적해석을 수행하였다. 해석결과로부터 다음과 같은 결과를 얻었다. 1)해석모델의 초기균열은 사용하중이상에서 모두 발생되었다. 2)사용하중단계에서 처짐은 건축구조설계기준에 제시된 허용처짐량 이내로 만족하였다. 3)유한요소모델의 파괴 시 극한하중은 모두 단면의 설계공칭강도 이상에서 발생되었다. 해석결과로부터 건축용 OCB보의 구조적인 신뢰성이 입증되었다.

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Higher order free vibration of sandwich curved beams with a functionally graded core

  • Fard, K. Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • 제49권5호
    • /
    • pp.537-554
    • /
    • 2014
  • In this paper, free vibration of a sandwich curved beam with a functionally graded (FG) core was investigated. Closed-form formulations of two-dimensional (2D) refined higher order beam theory (RHOBT) without neglecting the amount of z/R was derived and used. The present RHOBT analysis incorporated a trapezoidal shape factor that arose due to the fact that stresses through the beam thickness were integrated over a curved surface. The solutions presented herein were compared with the available numerical and analytical solutions in the related literature and excellent agreement was obtained. Effects of some dimensionless parameters on the structural response were investigated to show their effects on fundamental natural frequency of the curved beam. In all the cases, variations of the material constant number were calculated and presented. Effect of changing ratio of core to beam thickness on the fundamental natural frequency depended on the amount of the material constant number.

지하 터파기 버팀시스템의 전산해석 사례 및 평가 (Evaluation of Computerized Methods for Stepwise Underground Excavation and Support System)

  • 장찬수;우홍기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.289-311
    • /
    • 1991
  • Analysis of supported excavation system by Elasto-Plastic Isoparametric Finite Element Method and Elasto-Plastic Beam Method have been conducted for the simulation of stepwise underground excavation. Conventional methods, fixed Supported Beam and Spring Supported Beam method, also have been examined and compared with the results of elasto-plastic beam method and field data. Except unavoidable result of upward ground settlement near the top of retaining wall and relatively high bending moment of wall at each excavation level, satisfactory results have been derived using elasto-plastic isopara metric finite element method. The results from elasto-plastic beam analysis program, developed by the author, are proved to be fit field data in acceptable variance as shown in the paper. Displacement and bending moment, of the wall by conventional methods, both fixed supported beam and spring supported beam, are always underestimated than field data, and attention must be given that the diffence increases with deeper excavation depth and lower horizontal subgrade reaction of the ground.

  • PDF

도로교 설계기준 및 AASHTO LRFD 설계기준에 근거한 U-채널 교량측보의 차량충돌의 영향 (Effect of Car-Crash at Edge Beam of U-Channel Bridge based on Korean Highway Bridge Specifications and AASHTO LRFD Bridge Design Specifications)

  • 최동호;나호성;이광원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.490-494
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Although it is effective to reduce additional dead loads, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, it requires behavior analysis and property investigation through the vehicle impact crashing edge beam. This study presents method of structural analysis of U-channel bridge and investigates design specifications for the effect of the edge beam under the vehicle impact. Also, it carries out stability investigation of behavior of edge beam and slab, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification.

  • PDF

Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures

  • Park, Jung-Wook;Kim, Chul-Soo;Song, Jin-Gyu;Lee, Soo-Gon
    • KCI Concrete Journal
    • /
    • 제13권2호
    • /
    • pp.49-57
    • /
    • 2001
  • Flat-plate buildings are commonly modeled as two-dimensional frames to calculate unbalanced moments, lateral drift and shear at slab-column connections. The slab-column frames under lateral loads are analyzed using effective beam width models, which is convenient for computer analysis. In this case, the accuracy of this approach depends on the exact values of effective beam width to account for the actual behavior of slab-column connections. In this parametric study, effective beam width coefficients for wide range of the variations are calculated on the several types of slab-column connections, and the results are compared with those of other researches. Also the formulas for effective beam width coefficients are proposed and verified by finite element analysis. The proposed formulas are founded to be more suitable than others for analyzing flat-plate buildings subjected to lateral loading.

  • PDF

대칭 적층한 얇은 고강도 탄소섬유 에폭시 복합재 보의 기계적 동특성 (Dynamic Mechanical Properties of the Symmetric Laminated high Strength Carbon Fiber Epoxy Composite Thin Beams)

  • 정광섭;이대길;곽윤근
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2123-2138
    • /
    • 1994
  • A study on the dynamic mechanical properties of the high strength carbon fiber epoxy composite beam was carried out. The macromechanical model was used for the theoretical analysis of the symmetric laminated composite beam. The anisotropic plate theory and Bernoulli-Euler beam theory were used to predict the effective flexural elastic modulus and the specific damping capacity of laminated composite beam. The free flexural vibration and torsional vibration tests were carried out to determine the specific damping capacities of the unidirectional laminated composite beam. The vibration tests were performed in a vacuum chamber with laser vibrometer system and electromagnetic hammer to obtain accurate experimental data. From the computational and experimental results, it was found that the theoretical values with the macromechanical analysis and the experimental data of symmetric laminated composite beam were in good agreement.