• Title/Summary/Keyword: bead frame

Search Result 16, Processing Time 0.02 seconds

Development of Measurement System for Welding Bead Shape using LabVIEW (LabVIEW를 이용한 용접비드 형상 계측시스템 개발)

  • Kang, Hoon-Hyo;Lee, Da-Hye;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.189-194
    • /
    • 2007
  • Recently, as consumer's claim fur car safety is increased, quality inspection method fur welding zone is strengthened. Therefore, from the methods that depend on welding zone bead shape size of seat frame in macrography or passive examination, the quality control by whole recording inspection is required. In this study, the system that is measuring automatically if worker checks welding bead fur quality inspection of seat frame is developed using LabVIEW. If the quality standard for the bead width and length of welding zone is inputted, the system measures automatically whether welding zone is bead length or bead width. Measured data is preserved by points and quality recording of welding zone is stored. The car seat きme welding zone is applied and experimented. The results gave good influence o9 the quality control of work efficiency.

  • PDF

Numerical Study on the Strength Safety and Displacement Behaviors of a Helmet (헬멧의 강도안전과 변형거동에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.41-45
    • /
    • 2008
  • This paper presents the numerical study on the strength safety and displacement behaviors of a helmet, which is to protect impact forces and to absorb the impact energy. Four different helmet models including a bead frame and a corrugation damper have been analyzed for the stress and the displacement characteristics by using the finite element method. The computed FEM results show that the bead frame on the summit area of the helmet is very useful to increase the strength safety of the helmet, and the corrugation damper on the lower part of the helmet may increase the energy absorption capacity. Thus, this paper recommends the bead frame and the corrugation damper as new design elements of the helmets.

  • PDF

Shape Optimal Design of the Door Frame of a Microwave Oven to Minimize Its Twisting Deformation (비틀림 변형 최소화를 위한 전자레인지 도어 프레임의 형상 최적설계)

  • Lee Boo-Youn;Koo Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1016-1023
    • /
    • 2006
  • When one opens the door of a microwave oven during its operation, twisting deformation of the door occurs, which may cause leakage of microwave through the gap between the door and the front plate. A numerical optimization is implemented to minimize the gap by maximizing twisting stiffness of the door of the oven. Design variables are deformed, which describe the shape of the bead in the horizontal and vertical flanges of the door frame. To minimize the twisting deformation, Two optimal design problems to find shapes of the bead in the flange are established. The problems are solved by a numerical optimization technique, their results being evaluated.

Fatigue Characteristics of SM490A Welded Joints for Bogie Frame (대차 프레임용 SM490A 용접재의 피로 특성 평가)

  • Park Jae Sil;Seok Chang Sung;Koo Jae Mean;Shin Jae Ho;Goo Byeong Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.146-153
    • /
    • 2004
  • We compared the fatigue characteristics of weld metal with those of base metal, and not heat-treated with heat-treated. Also, we examined the influence of bead in a viewpoint of fatigue life. From the experimental results, it has been seen that the fatigue characteristics of welded specimens grinded the toe of bead are slightly better than not grinded. We have seen that the fatigue life is affected more by the stress concentration on the profile change in the weld toe rather than by residual stress influence, because heat-treated or not had almost no influence on the fatigue characteristics.

Shape Optimal Design to Minimize Dynamic Twisting Deformation of the Door Frame of a Microwave Oven (전자레인지 도어 프레임의 동적 비틀림 변형 최소화를 위한 형상 최적설계)

  • Lee, Boo-Youn;Koo, Jin-Young;Kim, Won-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1479-1485
    • /
    • 2006
  • To minimize the leakage of microwave which can occur when one pulls the door of a microwave oven during its operation, shape optimization of the door frame is presented. A numerical optimization is implemented to minimize the dynamic twisting deformation of the door frame. Shape design variables are defined, which represent the dimension of the bead in the flange. Two optimal design problems are established to minimize the maximum twisting deformation from harmonic response analysis. The problems are solved, their results being compared and evaluated.

Fast laser welding with scanner on the joint between AZ31 thin sheet and die-casted AZ91D frame for smart phone application (스캐너를 이용한 AZ31 극박판재와 AZ91D 다이캐스팅 프레임의 고속레이저용접)

  • Lee, Mok-Young;Seo, Min-Hong
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • High welding speed and narrow weld seam are favorable for welding of magnesium alloy. Magnesium alloy is recommended for the smart frame because it has several advantages such as low density, high thermal conductivity, EMI shielding capability and good cast ability. This study is for the assembly welding of the magnesium smart frame with high productivity, good performance and low cost. The window for battery on AZ91D frame produced by die-casting was prepared by CNC machining. Corresponding AZ31 blank of 0.2mm thickness was prepared by die-blanking cut. All system set was fixed at the stationary bed but the laser beam was manipulated by scanner up-to 1,000mm/s speed. The weld joint between AZ31 sheet and AZ91D frame was welded by fiber laser on 850~1,000W output power. The joint showed penetration enough but some humping bead. The distortion by the weld heat was almost free because of the quick dissipation of the heat by small beam size and fast welding. Consequently, the thinner magnesium foil was assembled successfully to the magnesium frame of mobile phone.

Finite Element Analysis on the Stress and Deformation Behaviors of a Safety Helmet (안전헬멧의 응력 및 변형거동에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • This paper presents the stress and deformation behaviors using the finite element method as a function of the thickness of the helmets without the bead frames on the top of the shell structure. The helmet that would provide head and neck protections without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and impact energy absorption. The FEM computed results show that when the impulsive force is applied on the top surface of a helmet, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the top surface of the helmet shell. As the helmet thickness is decreased from 4mm to 2mm, the impact energy absorbing rate is radically increased, and the maximum stress of the helmet is increased over the tensile strength, 54.3MPa of the thermoplastic material. Thus, the top surface of the helmet should be supported by a bead frame and increased thickness of the shell structure.

  • PDF

A Study on the Strength Analysis of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 강도안전성에 관한 연구)

  • Kim, Han-Goo;Shim, Jong-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, the strength analysis has been presented for the stress and strain by using the finite element method for various shell models of the helmets. The advanced helmet that would provide head protection without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and workability of the workers. We need a safe, comfortable and light weight of the helmet shell structure. Thus, the helmets had to stand up to the most rigorous conditions encountered for the fire and gas explosion. The FEM computed results show that when the impulsive force is applied on the summit area of a helmet shell structure, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the summit of the helmet shell. Thus, the summit area of the helmet shell should be supported by a bead frame and increased thickness of the bead. But the overall thickness of the helmet is to decrease for the light weight of a helmet.

  • PDF

Fatigue Characteristic of SM490A Welded Joints for Bogie Frame (대차 프레임용 SM490A강 용접재의 피로 특성 평가)

  • Park J. S.;Seok C. S.;Koo J. M.;Kim D. J.;Shin J. H.;Goo B. C.
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.859-864
    • /
    • 2004
  • In this study, we compared the fatigue characteristics of weld metal with those of base metal. Also we examined the influence of heat treatment and weld bead profiles for the fatigue life of weld metals. From the experimental results, it was seen that the fatigue characteristics of welded specimens with a grinded toe of bead are slightly better than those are not grinded. Also the fatigue life is affected more by the stress concentration on the profile change in the weld toe rather than by residual stress influence, because the fatigue characteristic of weld metals was not influenced whether the heat treatment is conducted or not.

  • PDF

Structural Design of a Cathode-ray Tube (CRT) to Improve its Mechanical Shockproof Character

  • Park, Sang-Hu;Kim, Won-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1361-1370
    • /
    • 2006
  • An electronic beam mis-landing phenomenon on the RGB (red/green/blue) -fluorescent surface has been considered as one of serious problems to be solved in cathode-ray tube (CRT), which is generally caused by mechanical shock and vibration. In this work, structural design concepts on the major parts of the CRT, such as a frame, a shadow mask, and a spring, are studied to improve the mechanical shockproof character of a CRT by FEM-analyses and experimental approaches ; a frame is newly designed to have strength employing the double-corner-beads which reduces considerably the distortion of the frame and the shadow mask : the edge-bead of a shadow-mask is redesigned to maintain the wide curved surface of a shadow-mask after mechanical shock : finally, a spring supporting the frame and the shadow-mask is designed to have enough flexibility along drop-direction. As an example, a conventional type of a 15inch CRT was utilized to demonstrate the feasibility and usefulness of this work. Overall, some favorable information on the structural design of the CRT is achieved, and the mechanical shockproof character of a 15-inch CRT is improved in the degree of 3G $(1G=9.81m/s^2)$ as an average-value.