Hu, Qin;Lam, Heung Fai;Zhu, Hong Ping;Alabi, Stephen Adeyemi
Smart Structures and Systems
/
제21권4호
/
pp.435-448
/
2018
This paper reports the development of a theoretically rigorous method for permanent way engineers to assess the condition of railway ballast under a concrete sleeper with the potential to be extended to a smart system for long-term health monitoring of railway ballast. Owing to the uncertainties induced by the problems of modeling error and measurement noise, the Bayesian approach was followed in the development. After the selection of the most plausible model class for describing the damage status of the rail-sleeper-ballast system, Bayesian model updating is adopted to calculate the posterior PDF of the ballast stiffness at various regions under the sleeper. An obvious drop in ballast stiffness at a region under the sleeper is an evidence of ballast damage. In model updating, the model that can minimize the discrepancy between the measured and model-predicted modal parameters can be considered as the most probable model for calculating the posterior PDF under the Bayesian framework. To address the problems of non-uniqueness and local minima in the model updating process, a two-stage hybrid optimization method was developed. The modified evolutionary algorithm was developed in the first stage to identify the important regions in the parameter space and resulting in a set of initial trials for deterministic optimization to locate all most probable models in the second stage. The proposed methodology was numerically and experimentally verified. Using the identified model, a series of comprehensive numerical case studies was carried out to investigate the effects of data quantity and quality on the results of ballast damage detection. Difficulties to be overcome before the proposed method can be extended to a long-term ballast monitoring system are discussed in the conclusion.
수공구조물을 설계하거나 수자원계획을 수립할 때 제한된 수문자료로 인해 수문모형의 매개변수를 추정하는데 어려움이 따르며 추정된 결과에 신뢰성을 부여하기 위해서 필수적으로 불확실성 분석이 필요하다 하겠다. 이러한 관점에서 본 연구에서는 국내외에서 주로 이용되고 있는 NWS-PC 강우-유출 모형을 대상으로 보다 진보된 매개변수 추정과 불확실성 분석이 가능한 Bayesian Markov Chain Monte Carlo 기법과 결합하여 국내 소양강댐 유역 일유입량 모의에 적용하였다. 실측 일유입량 자료를 대상으로 모형의 검정과정을 수행하였으며 NWS-PC 모형의 총 13개의 매개변수에 대한 사후분포를 추정하여 유출수문곡선의 불확실성 구간을 추정하였다. 검정 및 검증 모두에서 Bayesian Markov Chain Monte Carlo 기법이 모형의 적합성 측면에서 기존 방법론과 비교해보면 다소 우수하거나 비슷한 결과를 나타내었다. 실제로 유역에 발생하는 유출은 다양한 요인에 따라 변화될 수 있으며 이러한 점에서 Bayesian 방법은 강우-유출 관계에서 발생하는 이러한 불확실성을 매개변수의 불확실성으로 인지함으로서 우리가 예상치 못한 유출 사상에 대한 형태를 고려할 수 있는 장점이 있다. 따라서 댐 설계와 같은 대규모 수공 구조물 설계 시에 이러한 불확실성이 접목된 강우-유출 분석이 이루어진다면 보다 합리적인 방법으로 홍수 위험도 분석이 가능하며 더욱이 댐 규모 결정에 있어서 신뢰성 있는 의사 결정 수단을 제공할 수 있을 것으로 사료된다.
최근 들어 확률 분포를 개체군으로부터 추정하여 보다 효율적으로 최적화를 해결하려는 연구가 진행되고 있다. 특히 복잡한 문제의 해결을 위해서 혼합 분포가 사용되고 있다. 그러나 이 경우 몇 개의 성분으로 혼합 분포를 나타낼 것인가를 결정하기 어려운 문제가 있으며, 각 분포에 의하여 표현되는 이전 세대의 우수한 부분 해들을 잘 결합하지 못하는 단점이 있다. 본 논문에서는 변분 베이지안 혼합 인자 분석(variational Bayesian mixtures of factor analyzers) 기법을 사용한 개체군의 분포 추정을 통해 실수 공간에서의 최적화 문제를 해결하는 방법을 제안한다. 이 기법은 혼합 분포의 개수 추정을 자동화하며, 잠재 변수(latent variable)를 사용하여 각 분포가 표현하는 세부 개체군 내에 포함된 부분 해들의 혼합을 효율적으로 수행할 수 있다. 잘 알려진 함수 최적화 문제들에 대해 다른 분포 추정 진화 알고리즘과 비교하여 제안하는 방법의 우수성을 검증하였다. 또한 시스템 생물학에서 다루고 있는 생화학 네트워크의 동적 모델링을 위한 매개변수 추정도 성공적으로 수행하였다.
본 연구에서는 소양강댐 유역에서의 실측 단일사상 강우-유출 자료를 활용하여 Clark 단위도 방법의 매개변수를 최적화 하였으며, 그 결과를 제시하였다. 일반적으로 국내에서는 유역특성인자 최적화 분석시 미육군공병단의 HEC-1, HEC-HMS 등의 모형을 사용하고 있다. 그러나 해당 모형의 경우 유출수문곡선의 형상, 크기 등의 재현에만 초점이 맞춰져 있으며, 산정된 매개변수들의 평균을 사용하고 있어 실제 강우-유출 관계를 묘사하는데 어려움이 존재하고 있다. 이러한 점에서 본 연구에서는 기존 Clark 합성단위도법과 계층적 Bayesian 기법을 결합하여 수집된 강우-유출 자료를 동시에 활용하여 매개변수를 산정할 수 있는 모형을 개발하였다. 본 연구에서 개발된 모형을 적용한 결과 개별 단일사상 기반의 최적화 기법에 비해 다중 강우-유출 자료를 Pooling하여 매개변수를 산정하는 계층적 Bayesian 모형에서 BIC 결과 및 다수의 통계적 지표를 통해 모형의 우수성을 확인할 수 있었다. 더불어 홍수량에 따른 유역특성인자 매개변수 반응에 대한 관계규명을 기반으로 향후 댐 설계 또는 PMF 산정시 본 연구의 결과가 활용이 가능할 것으로 판단된다.
최근 소프트웨어 결함 예측 연구는 교차 프로젝트 간의 결함 예측뿐만 아니라 교차 버전 프로젝트 간의 결함 예측 또한 이루어지고 있다. 종래의 교차 버전 결함 예측 연구들은 WP(Within-Project)로 가정한다. 하지만, CV(Cross-Version) 환경에서는 프로젝트 버전 간의 분포 차이의 중요성을 고려한 연구들이 없다. 본 연구에서는 다른 버전 간의 분포 차이까지 고려하는 자동화된 베이지안 최적화 프레임워크를 제안한다. 이를 통해 분포차이에 따라 전이 학습(Transfer Learning) 수행 여부를 자동으로 선택하여 준다. 해당 프레임워크는 버전 간의 분포 차이, 전이 학습과 분류기(Classifier)의 하이퍼파라미터를 최적화하는 기법이다. 실험을 통해 전이 학습 수행 여부를 분포차 기준으로 자동으로 선택하는 방법이 효과적이라는 것을 알 수 있다. 그리고 최적화를 이용하는 것이 성능 향상에 효과가 있으며 이러한 결과 소프트웨어 인스펙션 노력을 감소할 수 있다는 것을 확인할 수 있다. 이를 통해 교차 버전 프로젝트 환경에서 신규 버전 프로젝트에 대하여 효과적인 품질 보증 활동 수행을 지원할 것으로 기대된다.
입력 랜덤 변수(input random variable)의 통계 모델링은 기계시스템의 신뢰성 해석(reliability analysis), 신뢰성 기반 설계(reliability-based design optimization), 해석모델의 통계적 검정(validation) 및 보정(calibration)을 위해 반드시 필요하다. 대표적인 통계모델링 기법에는 Akaike Information Criterion (AIC), AIC correction (AICc), Bayesian Information Criterion, Maximum Likelihood Estimation (MLE), Bayesian 방법 등이 있다. 이러한 방법들은 기본적으로 주어진 데이터로부터 후보 모델의 우도함수값을 이용하여 후보 모델 중 가장 적합한 모델을 선택하는 방법이며, 방법에 따라 데이터 수 혹은 파라미터의 수를 고려하여 모델을 선정한다. 하지만 실제 현장에서 데이터의 통계모델링을 하는 엔지니어는 각 방법의 장단점에 대한 이해가 부족하여 어떤 방법이 정확한 방법인지 몰라 통계모델링 수행 시 어려움이 있다. 본 논문에서는 다양한 통계모델링 방법들을 비교하고 각 방법의 장단점 분석을 통해 가장 적합한 모델링 기법을 제안하고자 한다. 각 방법의 검증을 위해 다양한 모분포를 가정하고 다양한 사이즈의 샘플을 임의로 생성하여 시뮬레이션을 수행하였으며, 실제 공학 데이터를 사용하여 통계모델링 방법의 유효성을 검증하였다.
본 논문은 실내 주행 로봇의 위치 추정을 위해 최적화 기법을 적용한 방법에 대해 기술한다. 주행 로봇의 위치 추정에 사용되는 베이지안 필터 방법의 경우는 측정값과 환경 요소에 대한 불확실성을 고려하기위해 사용하는 조절 파라미터에 따라 추정성능이 달라진다. 또한 로봇동작 및 센서 측정 모델의 비선형성에 의하여 성능이 저하될 수 있다. 최적화 기법은 조절 파라미터가 적고 모델의 비선형성의 영향을 적게 받는다. 본 연구에서는 최적화 기법의 위치 추정 활용성을 보이기 위해 최적화 방법에 의한 추정성능과 EKF방법에 의한 추정 성능을 비교한다. 사용한 측정 센서는 초음파 위성 시스템(USAT, Ultrasonic Satellites system)으로서 4개의 비컨으로부터 로봇까지의 거리를 측정한다. 측정값의 비정상 오차를 제거하기 위하여 마할라노비스 거리(Mahalanobis Distance)를 이용한다. 최적화 기법은 거리 측정값을 사용하여 목적함수를 설계하고 반복계산을 통해 위치의 최적 값을 찾는다. 반복 수행을 위한 초기 위치를 베이시안 필터 방법을 통하여 적절히 설정함으로서 제안된 방법은 위치 추정 성능을 향상시키고 실행 시간을 단축시킬 수 있다.
We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.
하이퍼파라미터(초매개변수) 최적화란 모델의 학습에 앞서 미리 설정해야 하는 값인 하이퍼파라미터의 최적값을 탐색하는 문제이다. 이때의 최적값은 학습을 끝낸 모델의 성능을 가능한 최대치로 높이게 하는 값이다. 한편, 최근 모바일 장치를 이용한 포지셔닝 데이터의 대량 수집이 가능해지면서 이를 활용하여 위치 기반 서비스(Location-Based Service)를 위한 데이터 분석 및 예측에 관한 연구가 활발히 이루어졌다. 그중 이동 경로를 이미지로 패턴화하여 국소 지역 내에서 다음 위치를 예측하는 CNN 모델에 대해서 하이퍼파라미터 튜닝을 진행하였다. 결과적으로 베이지안 최적화(Bayesian Optimization)를 통해 모델의 성능을 평균 3.7%, 최대 9.5%까지 개선할 수 있음을 확인하였다.
Reinforced concrete (RC) flat slabs should be designed based on punching shear strength. As part of this study, machine learning (ML) algorithms were developed to accurately predict the punching shear strength of RC flat slabs without shear reinforcement. It is based on Bayesian optimization (BO), combined with four standard algorithms (Support vector regression, Decision trees, Random forests, Extreme gradient boosting) on 446 datasets that contain six design parameters. Furthermore, an analysis of feature importance is carried out by Shapley additive explanation (SHAP), in order to quantify the effect of design parameters on punching shear strength. According to the results, the BO method produces high prediction accuracy by selecting the optimal hyperparameters for each model. With R2 = 0.985, MAE = 0.0155 MN, RMSE = 0.0244 MN, the BO-XGBoost model performed better than the original XGBoost prediction, which had R2 = 0.917, MAE = 0.064 MN, RMSE = 0.121 MN in total dataset. Additionally, recommendations are provided on how to select factors that will influence punching shear resistance of RC flat slabs without shear reinforcement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.