• 제목/요약/키워드: bayesian optimization

검색결과 99건 처리시간 0.024초

Bayesian ballast damage detection utilizing a modified evolutionary algorithm

  • Hu, Qin;Lam, Heung Fai;Zhu, Hong Ping;Alabi, Stephen Adeyemi
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.435-448
    • /
    • 2018
  • This paper reports the development of a theoretically rigorous method for permanent way engineers to assess the condition of railway ballast under a concrete sleeper with the potential to be extended to a smart system for long-term health monitoring of railway ballast. Owing to the uncertainties induced by the problems of modeling error and measurement noise, the Bayesian approach was followed in the development. After the selection of the most plausible model class for describing the damage status of the rail-sleeper-ballast system, Bayesian model updating is adopted to calculate the posterior PDF of the ballast stiffness at various regions under the sleeper. An obvious drop in ballast stiffness at a region under the sleeper is an evidence of ballast damage. In model updating, the model that can minimize the discrepancy between the measured and model-predicted modal parameters can be considered as the most probable model for calculating the posterior PDF under the Bayesian framework. To address the problems of non-uniqueness and local minima in the model updating process, a two-stage hybrid optimization method was developed. The modified evolutionary algorithm was developed in the first stage to identify the important regions in the parameter space and resulting in a set of initial trials for deterministic optimization to locate all most probable models in the second stage. The proposed methodology was numerically and experimentally verified. Using the identified model, a series of comprehensive numerical case studies was carried out to investigate the effects of data quantity and quality on the results of ballast damage detection. Difficulties to be overcome before the proposed method can be extended to a long-term ballast monitoring system are discussed in the conclusion.

Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석 (Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme)

  • 권현한;문영일;김병식;윤석영
    • 대한토목학회논문집
    • /
    • 제28권4B호
    • /
    • pp.383-392
    • /
    • 2008
  • 수공구조물을 설계하거나 수자원계획을 수립할 때 제한된 수문자료로 인해 수문모형의 매개변수를 추정하는데 어려움이 따르며 추정된 결과에 신뢰성을 부여하기 위해서 필수적으로 불확실성 분석이 필요하다 하겠다. 이러한 관점에서 본 연구에서는 국내외에서 주로 이용되고 있는 NWS-PC 강우-유출 모형을 대상으로 보다 진보된 매개변수 추정과 불확실성 분석이 가능한 Bayesian Markov Chain Monte Carlo 기법과 결합하여 국내 소양강댐 유역 일유입량 모의에 적용하였다. 실측 일유입량 자료를 대상으로 모형의 검정과정을 수행하였으며 NWS-PC 모형의 총 13개의 매개변수에 대한 사후분포를 추정하여 유출수문곡선의 불확실성 구간을 추정하였다. 검정 및 검증 모두에서 Bayesian Markov Chain Monte Carlo 기법이 모형의 적합성 측면에서 기존 방법론과 비교해보면 다소 우수하거나 비슷한 결과를 나타내었다. 실제로 유역에 발생하는 유출은 다양한 요인에 따라 변화될 수 있으며 이러한 점에서 Bayesian 방법은 강우-유출 관계에서 발생하는 이러한 불확실성을 매개변수의 불확실성으로 인지함으로서 우리가 예상치 못한 유출 사상에 대한 형태를 고려할 수 있는 장점이 있다. 따라서 댐 설계와 같은 대규모 수공 구조물 설계 시에 이러한 불확실성이 접목된 강우-유출 분석이 이루어진다면 보다 합리적인 방법으로 홍수 위험도 분석이 가능하며 더욱이 댐 규모 결정에 있어서 신뢰성 있는 의사 결정 수단을 제공할 수 있을 것으로 사료된다.

변분 베이지안 혼합 인자 분석에 의한 분포 추정을 이용하는 진화 알고리즘 (Evolutionary Algorithms with Distribution Estimation by Variational Bayesian Mixtures of Factor Analyzers)

  • 조동연;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1071-1083
    • /
    • 2005
  • 최근 들어 확률 분포를 개체군으로부터 추정하여 보다 효율적으로 최적화를 해결하려는 연구가 진행되고 있다. 특히 복잡한 문제의 해결을 위해서 혼합 분포가 사용되고 있다. 그러나 이 경우 몇 개의 성분으로 혼합 분포를 나타낼 것인가를 결정하기 어려운 문제가 있으며, 각 분포에 의하여 표현되는 이전 세대의 우수한 부분 해들을 잘 결합하지 못하는 단점이 있다. 본 논문에서는 변분 베이지안 혼합 인자 분석(variational Bayesian mixtures of factor analyzers) 기법을 사용한 개체군의 분포 추정을 통해 실수 공간에서의 최적화 문제를 해결하는 방법을 제안한다. 이 기법은 혼합 분포의 개수 추정을 자동화하며, 잠재 변수(latent variable)를 사용하여 각 분포가 표현하는 세부 개체군 내에 포함된 부분 해들의 혼합을 효율적으로 수행할 수 있다. 잘 알려진 함수 최적화 문제들에 대해 다른 분포 추정 진화 알고리즘과 비교하여 제안하는 방법의 우수성을 검증하였다. 또한 시스템 생물학에서 다루고 있는 생화학 네트워크의 동적 모델링을 위한 매개변수 추정도 성공적으로 수행하였다.

다중 강우유출자료를 이용한 Clark 단위도의 Bayesian 매개변수 추정 (Bayesian parameter estimation of Clark unit hydrograph using multiple rainfall-runoff data)

  • 김진영;권덕순;배덕효;권현한
    • 한국수자원학회논문집
    • /
    • 제53권5호
    • /
    • pp.383-393
    • /
    • 2020
  • 본 연구에서는 소양강댐 유역에서의 실측 단일사상 강우-유출 자료를 활용하여 Clark 단위도 방법의 매개변수를 최적화 하였으며, 그 결과를 제시하였다. 일반적으로 국내에서는 유역특성인자 최적화 분석시 미육군공병단의 HEC-1, HEC-HMS 등의 모형을 사용하고 있다. 그러나 해당 모형의 경우 유출수문곡선의 형상, 크기 등의 재현에만 초점이 맞춰져 있으며, 산정된 매개변수들의 평균을 사용하고 있어 실제 강우-유출 관계를 묘사하는데 어려움이 존재하고 있다. 이러한 점에서 본 연구에서는 기존 Clark 합성단위도법과 계층적 Bayesian 기법을 결합하여 수집된 강우-유출 자료를 동시에 활용하여 매개변수를 산정할 수 있는 모형을 개발하였다. 본 연구에서 개발된 모형을 적용한 결과 개별 단일사상 기반의 최적화 기법에 비해 다중 강우-유출 자료를 Pooling하여 매개변수를 산정하는 계층적 Bayesian 모형에서 BIC 결과 및 다수의 통계적 지표를 통해 모형의 우수성을 확인할 수 있었다. 더불어 홍수량에 따른 유역특성인자 매개변수 반응에 대한 관계규명을 기반으로 향후 댐 설계 또는 PMF 산정시 본 연구의 결과가 활용이 가능할 것으로 판단된다.

향상된 교차 버전 결함 예측을 위한 베이지안 최적화 프레임워크 (Bayesian Optimization Framework for Improved Cross-Version Defect Prediction)

  • 최정환;류덕산
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.339-348
    • /
    • 2021
  • 최근 소프트웨어 결함 예측 연구는 교차 프로젝트 간의 결함 예측뿐만 아니라 교차 버전 프로젝트 간의 결함 예측 또한 이루어지고 있다. 종래의 교차 버전 결함 예측 연구들은 WP(Within-Project)로 가정한다. 하지만, CV(Cross-Version) 환경에서는 프로젝트 버전 간의 분포 차이의 중요성을 고려한 연구들이 없다. 본 연구에서는 다른 버전 간의 분포 차이까지 고려하는 자동화된 베이지안 최적화 프레임워크를 제안한다. 이를 통해 분포차이에 따라 전이 학습(Transfer Learning) 수행 여부를 자동으로 선택하여 준다. 해당 프레임워크는 버전 간의 분포 차이, 전이 학습과 분류기(Classifier)의 하이퍼파라미터를 최적화하는 기법이다. 실험을 통해 전이 학습 수행 여부를 분포차 기준으로 자동으로 선택하는 방법이 효과적이라는 것을 알 수 있다. 그리고 최적화를 이용하는 것이 성능 향상에 효과가 있으며 이러한 결과 소프트웨어 인스펙션 노력을 감소할 수 있다는 것을 확인할 수 있다. 이를 통해 교차 버전 프로젝트 환경에서 신규 버전 프로젝트에 대하여 효과적인 품질 보증 활동 수행을 지원할 것으로 기대된다.

통계모델링 방법의 비교 연구 (A Comparison Study on Statistical Modeling Methods)

  • 노유정
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.645-652
    • /
    • 2016
  • 입력 랜덤 변수(input random variable)의 통계 모델링은 기계시스템의 신뢰성 해석(reliability analysis), 신뢰성 기반 설계(reliability-based design optimization), 해석모델의 통계적 검정(validation) 및 보정(calibration)을 위해 반드시 필요하다. 대표적인 통계모델링 기법에는 Akaike Information Criterion (AIC), AIC correction (AICc), Bayesian Information Criterion, Maximum Likelihood Estimation (MLE), Bayesian 방법 등이 있다. 이러한 방법들은 기본적으로 주어진 데이터로부터 후보 모델의 우도함수값을 이용하여 후보 모델 중 가장 적합한 모델을 선택하는 방법이며, 방법에 따라 데이터 수 혹은 파라미터의 수를 고려하여 모델을 선정한다. 하지만 실제 현장에서 데이터의 통계모델링을 하는 엔지니어는 각 방법의 장단점에 대한 이해가 부족하여 어떤 방법이 정확한 방법인지 몰라 통계모델링 수행 시 어려움이 있다. 본 논문에서는 다양한 통계모델링 방법들을 비교하고 각 방법의 장단점 분석을 통해 가장 적합한 모델링 기법을 제안하고자 한다. 각 방법의 검증을 위해 다양한 모분포를 가정하고 다양한 사이즈의 샘플을 임의로 생성하여 시뮬레이션을 수행하였으며, 실제 공학 데이터를 사용하여 통계모델링 방법의 유효성을 검증하였다.

최적화 기법을 사용한 실내 이동 로봇의 위치 인식 (An Optimization Approach for Localization of an Indoor Mobile Robot)

  • 한준희;고낙용
    • 한국지능시스템학회논문지
    • /
    • 제26권4호
    • /
    • pp.253-258
    • /
    • 2016
  • 본 논문은 실내 주행 로봇의 위치 추정을 위해 최적화 기법을 적용한 방법에 대해 기술한다. 주행 로봇의 위치 추정에 사용되는 베이지안 필터 방법의 경우는 측정값과 환경 요소에 대한 불확실성을 고려하기위해 사용하는 조절 파라미터에 따라 추정성능이 달라진다. 또한 로봇동작 및 센서 측정 모델의 비선형성에 의하여 성능이 저하될 수 있다. 최적화 기법은 조절 파라미터가 적고 모델의 비선형성의 영향을 적게 받는다. 본 연구에서는 최적화 기법의 위치 추정 활용성을 보이기 위해 최적화 방법에 의한 추정성능과 EKF방법에 의한 추정 성능을 비교한다. 사용한 측정 센서는 초음파 위성 시스템(USAT, Ultrasonic Satellites system)으로서 4개의 비컨으로부터 로봇까지의 거리를 측정한다. 측정값의 비정상 오차를 제거하기 위하여 마할라노비스 거리(Mahalanobis Distance)를 이용한다. 최적화 기법은 거리 측정값을 사용하여 목적함수를 설계하고 반복계산을 통해 위치의 최적 값을 찾는다. 반복 수행을 위한 초기 위치를 베이시안 필터 방법을 통하여 적절히 설정함으로서 제안된 방법은 위치 추정 성능을 향상시키고 실행 시간을 단축시킬 수 있다.

AL6061-T4의 측면 엔드밀 가공에서 표면거칠기 예측을 위한 인공신경망 적용에 관한 연구 (A Study on the Application of ANN for Surface Roughness Prediction in Side Milling AL6061-T4 by Endmill)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.55-60
    • /
    • 2021
  • We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.

베이지안 최적화를 이용한 이동 경로 예측 모델의 성능 개선 (Improving Trajectory Pattern Prediction Model Using Bayesian Optimization)

  • 송하윤;남세현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.846-849
    • /
    • 2020
  • 하이퍼파라미터(초매개변수) 최적화란 모델의 학습에 앞서 미리 설정해야 하는 값인 하이퍼파라미터의 최적값을 탐색하는 문제이다. 이때의 최적값은 학습을 끝낸 모델의 성능을 가능한 최대치로 높이게 하는 값이다. 한편, 최근 모바일 장치를 이용한 포지셔닝 데이터의 대량 수집이 가능해지면서 이를 활용하여 위치 기반 서비스(Location-Based Service)를 위한 데이터 분석 및 예측에 관한 연구가 활발히 이루어졌다. 그중 이동 경로를 이미지로 패턴화하여 국소 지역 내에서 다음 위치를 예측하는 CNN 모델에 대해서 하이퍼파라미터 튜닝을 진행하였다. 결과적으로 베이지안 최적화(Bayesian Optimization)를 통해 모델의 성능을 평균 3.7%, 최대 9.5%까지 개선할 수 있음을 확인하였다.

Optimized machine learning algorithms for predicting the punching shear capacity of RC flat slabs

  • Huajun Yan;Nan Xie;Dandan Shen
    • Advances in concrete construction
    • /
    • 제17권1호
    • /
    • pp.27-36
    • /
    • 2024
  • Reinforced concrete (RC) flat slabs should be designed based on punching shear strength. As part of this study, machine learning (ML) algorithms were developed to accurately predict the punching shear strength of RC flat slabs without shear reinforcement. It is based on Bayesian optimization (BO), combined with four standard algorithms (Support vector regression, Decision trees, Random forests, Extreme gradient boosting) on 446 datasets that contain six design parameters. Furthermore, an analysis of feature importance is carried out by Shapley additive explanation (SHAP), in order to quantify the effect of design parameters on punching shear strength. According to the results, the BO method produces high prediction accuracy by selecting the optimal hyperparameters for each model. With R2 = 0.985, MAE = 0.0155 MN, RMSE = 0.0244 MN, the BO-XGBoost model performed better than the original XGBoost prediction, which had R2 = 0.917, MAE = 0.064 MN, RMSE = 0.121 MN in total dataset. Additionally, recommendations are provided on how to select factors that will influence punching shear resistance of RC flat slabs without shear reinforcement.