• 제목/요약/키워드: bayesian decision

검색결과 207건 처리시간 0.023초

Movie Choice under Joint Decision: Reassessment of Online WOM Effect

  • Kim, Youngju;Kim, Jaehwan
    • Asia Marketing Journal
    • /
    • 제15권1호
    • /
    • pp.155-168
    • /
    • 2013
  • This study describes consumers' movie choices in conjunction with other group members and attempts to reassess the effect of the online word of mouth (WOM) source in a joint decision context. The tendency of many people to go to movies in groups has been mentioned in previous literature but there is no modeling research that studies movie choice from the group decision perspective. We found that ignoring the group movie-going perspective can result in a misunderstanding, especially underestimation of genre preference and the impact of the WOM variables. Most of the studies to measure online WOM effects were done at the aggregate level, and the role of online WOM variables(volume vs valence) is mixed in the literature. We postulate that group-level analysis might offer insight to resolve these mixed understanding of WOM effects in the literature. We implemented the study via a random effect model with group-level heterogeneity. Romance, drama, and action were selected as genre variables; valence and volume were selected as online WOM variables. A choice-based conjoint survey was used for data collection and the models was estimated via Bayesian MCMC method. The empirical results show that (i) both genre and online WOM are important variables when consumers choose movies, especially as group, and (ii) the WOM valence effect are amplified more than the volume effect does as individuals are engaged in group decision. This research contributes to the literature in several ways. First, we investigate movie choice from a group movie-going perspective that is more realistic and consistent with the market behavior. Secondly, the study sheds new light on the WOM effect. At group-level, both valence and volume significantly affect movie choices, which adds to the understanding of the role of online WOM in consumers' movie choice.

  • PDF

남극 극 전선 탐지를 위한 접근법과 변동성에 대한 연구 (An Approach for the Antarctic Polar Front Detection and an Analysis for itsVariability)

  • 박진구;김현철;황지현;배덕원;조영헌
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1179-1192
    • /
    • 2018
  • 이 연구는 남빙양(Southern Ocean)에서 나타나는 주된 전선(Front)들 중에 남극 극 전선(Antarctic Polar Front; PF)을 탐지하기 위하여 위성 기반 해수면 온도(sea surface temperature)와 해수면 고도(sea surface height) 자료를 복합적으로 사용하였다. 정확한 PF 탐지를 위하여 일별 SST와 SSH 자료를 각각 기반으로 하여 베이지안 결정 이론(Bayesian decision theory)을 적용하였으며, 이를 근거로 전선/비전선의 신호를 격자 별로 분류하였다. 이후, 시공간적인 합성을 통하여 일차적인 노이즈(noise) 제거 및 지리학적 연결성을 보완하였다. 그러나 이들 과정을 수행하고도 여전히 잔존하는 일부 노이즈를 제거하기 위하여 해빙 및 연안 마스킹(masking)을 수행하였다. 또한 모폴로지 연산(morphology operation)을 통하여 지류 성분을 최대한으로 배제하고 주된 전선 성분만을 추출하였다. 최종적으로 선택된 전선 격자 들에서 PF의 특징을 나타낼 수 있도록 가장 최남단의 전선만을 선택하여 평활 스플라인(smoothing spline) 최적화 방식을 통해 선 형태의 월별 PF를 산출하였다. 산출된 PF는 기존의 연구에서 제시한 PF의 위치와 상당히 유사한 것으로 나타났으며, 특히 바닥 지형에 따라 상당 부분 결정되는 PF의 변화를 잘 모사하는 것으로 보인다. 로스해 주변(${\sim}180^{\circ}W$)과 호주 이남의 해역($120^{\circ}E-140^{\circ}E$)은 PF의 위치에 대한 계절적 변동이 높게 나타나며, 그러한 변동이 기존에 제시된 결과와 상당히 유사한 경향을 지닌다. 그러므로 이 연구에서 산출된 PF의 위치에 대한 탐지 결과가 향후 장기적 관점에서 수행될 연구에 사용될 수 있는 가치를 지닐 것으로 기대한다.

RSSI 판독 라이브러리 함수 및 옥내 측위 모듈 구현 (Implementation of a Library Function of Scanning RSSI and Indoor Positioning Modules)

  • 임재걸;정승환;심규박
    • 한국멀티미디어학회논문지
    • /
    • 제10권11호
    • /
    • pp.1483-1495
    • /
    • 2007
  • IEEE 802.11 기술 덕분에 학교와 대형 쇼핑몰을 비롯한 사무실, 병원, 역 등지에서도 무선 LAN을 통한 인터넷 접속이 가능하다. 본 논문은 무선 LAN에 현재 가장 많이 사용되는 2.4GHz 대역의 802.11b와 802.11g 프로토콜이 탑재된 액세스포인트(AP: Access Point)로부터 수신한 신호의 세기(RSSI: Received Signal Strength Indicator)를 판독할 수 있는 C# 라이브러리 함수를 제안한다. 위치기반서비스는 사용자의 현재 위치를 실시간으로 측정하여 현재 위치를 기반으로 길을 안내하거나, 현재 위치와 관련한 콘텐츠를 제공하는 등의 유용한 서비스를 제공한다. 옥내에서 위치기반서비스를 제공하려면 옥내에 있는 사용자의 위치를 판정하는 옥내측위가 반드시 선결되어야 한다. 옥내측위 기술로 적외선, 초음파, UDP 패킷의 신호세기 등을 이용하는 방법들이 소개된 바 있다. 이러한 방법들은 측위를 위한 특수 장비를 설비해야만 한다는 단점이 있다. 본 논문은 RSSI를 판독하는 라이브러리 함수를 제공할 뿐만 아니라 제공하는 함수를 이용한 옥내 측위 구현 예도 소개한다. 구현에 적용된 방법들은 이미 널리 알려진 K-NN(K Nearest Neighbors), 베이시안 방법 그리고 삼각측량법이다. K-NN 방법과 베이시안 방법은 일종의 지문방식인데, 지문방식은 준비단계와 실시간단계로 구성되며, 실시간 단계의 처리 과정은 처리속도가 빨라야만 한다. 본 논문은 실시간 단계의 속도를 개선하는 방법으로 판단나무 방법(Decision Tree Method)을 제안하고, 이러한 방법들의 성능을 실험적으로 평가한 결과를 소개한다.

  • PDF

사고 데이터의 주요 원인을 이용한 어선 해양사고 분석에 관한 연구 (A Study on the Analysis of Marine Accidents on Fishing Ships Using Accident Cause Data)

  • 박상아;박득진
    • 한국항해항만학회지
    • /
    • 제47권1호
    • /
    • pp.1-9
    • /
    • 2023
  • 해양사고 분석에 관한 많은 연구가 진행되고 있으며, 해양사고는 매년 업데이트되고 있어 주기적으로 원인을 분석하고 규명하는 것이 필요하다. 이 연구에서는 이전의 데이터와 새로운 데이터를 활용하여 해양사고를 파악·분석을 통해 어선 해양사고 원인을 규명하여 사고를 예방하는 것이다. 해양사고 데이터는 어선의 특수성을 고려하여 해양안전심판원의 어선에 대한 해양사고재결서 16년간의 1,921건을 수집하였으며, 해양수산부 종합상황실 사고알림문자 이력 3년간의 1,917건을 수집하였다. 재결서 데이터와 문자 데이터는 변수에 따라 분류하였으며, 수량화 작업을 수행하였다. 수량화 작업을 통한 데이터를 사용하여 베이지안 네트워크를 이용해 사전확률을 계산하였고, 후방 추론을 이용하여 어선 해양사고를 예측하였다. 두 가지 수집한 데이터 중 해양사고재결서는 모든 어선의 사고가 재결서에 포함되지 않았기 때문에 해양수산부 사고알림문자를 선택하였다. 분류한 데이터를 베이지안 네트워크를 사용하여 어선 해양사고의 사전 확률을 계산하였다. 후방 추론으로 계산한 기관손상이 서해 연안에서 발생할 어선 해양사고의 확률은 0.0000031%였다. 이 연구의 기대효과는 어선 해양사고를 분석하기 위하여 새로운 사고알림문자 데이터를 활용하여 실제 어선 특성에 맞는 해양사고를 분석할 수 있다는 것이다. 추후에는 어선 해양사고에 영향을 미치는 변수들 간의 인과관계에 관한 연구를 수행할 예정이다.

마케팅 데이터를 대상으로 중요 통계 예측 기법의 정확성에 대한 비교 연구 (A Comparative Study on the Accuracy of Important Statistical Prediction Techniques for Marketing Data)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.775-780
    • /
    • 2019
  • 미래를 예측하는 기법은 통계에 기반을 둔 것과 딥러닝에 기반을 둔 기술로 분류할 수 있다. 그중 통계에 기반을 둔 것이 간단하고 정확성이 높아서 많이 사용된다. 하지만 실무자들은 많은 분석기법의 올바른 사용에 어려움이 많다. 이번 연구에서는 마케팅에 관련된 데이터에 다항로지스틱회귀, 의사결정나무, 랜덤포레스트, 서포트벡터머신, 베이지안 추론을 적용하여 예측의 정확성을 비교하였다. 동일한 마케팅 데이터를 대상으로 하였고, R을 활용하여 분석을 진행하였다. 마케팅 분야의 데이터 특성을 반영한 다양한 기법의 예측 결과가 실무자들에게 좋은 참고가 될 것으로 생각한다.

A Direct Utility Model with Dynamic Constraint

  • Kim, Byungyeon;Satomura, Takuya;Kim, Jaehwan
    • Asia Marketing Journal
    • /
    • 제18권4호
    • /
    • pp.125-138
    • /
    • 2017
  • The goal of the study is to understand how consumers' constraint as opposed to utility structure gives rise to final decision when consumers purchase more than one variant of product at a time, i.e., horizontal variety seeking or multiple-discreteness. Purchase and consumption decision not only produces utility but also involves some sort of cognitive pressure. Past consumption or last purchase is likely to be linked to this burden we face such as concern for obesity, risk of harm, and guilt for mischief. In this research, the existence and the role of dynamic constraint are investigated through a microeconomic utility model with multiple dynamic constraint. The model is applied to the salty snacks data collected from field study where burden for spiciness serves as a constraint. The results are compared to the conventional multiple discreteness choice models of static constraints, and policy implications on price discounts is explored. The major findings are that first, one would underestimate the level of consumer preference for product offerings when ignoring the carry-over of the concern from the past consumption, and second, the impact of price promotion on demand would be properly evaluated when the model allows for the role of constraint as both multiple and dynamic. The current study is different from the existing studies in two ways. First, it captures the effect of 'mental constraint' on demand in formal economic model. Second, unlike the state dependence well documented in the literature, the study proposes the notion of state dependence in different way, via constraint rather than utility.

베이지안 확률통계와 GIS를 연계한 기후변화 도시홍수 리스크 평가: 서울시 서초구를 대상으로 (Urban Flood Risk Assessment Considering Climate Change Using Bayesian Probability Statistics and GIS: A Case Study from Seocho-Gu, Seoul)

  • 이상혁;강정은;박창석
    • 한국지리정보학회지
    • /
    • 제19권4호
    • /
    • pp.36-51
    • /
    • 2016
  • 본 연구는 기후변화에 따른 도시홍수 리스크 평가를 위해 베이지안 확률통계 모형과 GIS를 연계 활용하였다. 리스크는 재난발생가능성과 영향 크기의 곱으로 평가될 수 있다. 본 연구는 베이지안 모델을 기반으로 침수발생가능성을 추정하였고, 기후변화 시나리오 정보를 반영하여 미래 침수발생가능성도 평가하였다. 침수로 발생할 수 있는 영향은 인명피해와 재산피해의 측면에서 살펴보았다. 서울시 서초구를 대상으로 분석한 결과, 현재 침수발생가능성은 하천에 인접하고, 주변지역보다 고도가 낮으며 불투수면 밀집지역인 서초동, 반포동 일대가 높게 나타났다. 미래 침수발생가능성 추정결과, 2050년의 위험지역 면적이 2030년보다 1.3배 증가하는 것으로 나타났다. 추정된 발생가능성을 활용한 리스크 평가 결과, 인명피해 리스크는 일반 및 고층 주거지역을 중심으로 높은 리스크를 보인 반면, 재산피해는 상업지역을 중심으로 리스크가 높게 나타났다. 2050년의 재산피해 리스크는 2030년의 재산피해 리스크보다 약 6.6% 증가하는 것으로 평가되었다. 본 연구에서 제안된 도시홍수 리스크 평가 기법은 상세한 공간결과 값의 제공으로 지역맞춤형 재해저감 전략을 위한 중요한 의사결정 자료로 활용될 수 있을 것으로 기대한다.

DP 선박 위치손실사고의 인적오류에 관한 연구 (A Study on Human Error of DP Vessels LOP Incidents)

  • 채종주
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.515-523
    • /
    • 2015
  • 본 연구에서는 10년간(2001 2010) IMCA에 보고된 DP 선박 LOP(Loss of Position)사고 612건에서 인적오류에 의한 사고 103건을 확인하여 이를 HFACS로 분류하였다. 그리고 이를 베이지안 네트워크에 적용하여 인적오류의 조건부 확률을 확인해 보았다. 그 결과 103건의 인적오류관련 사고는 모두 불안전한 행동에 의해서 발생하였고 이들 중 기술 기반 오류가 70건(68.00 %)으로 가장 큰 인적오류 비율을 차지하였다. 기술 기반 오류 중에서는 부주의한 DP 선박 운용 60건(58.3%), 절차 미 준수 8건(7.8%)이었고, 의사결정 오류에 의한 잘못된 조종이 21건(20.8%)을 차지하였다. 이러한 HFACS 분류의 베이지안 네트워크 적용을 통해서는 불안전한 감독(68%)이 불안전한 행동의 가장 큰 잠재적 요인으로 작용하고 있다는 것을 확인 할 수 있었다. 결론적으로 HFACS와 연계한 베이지안 네트워크는 인적오류를 분석하는 데 유용한 도구임을 확인 할 수 있었고, 분석 결과를 바탕으로 DP 선박안전 운용을 위한 정책, 내부 관계, 훈련등과 같은 인적오류를 경감 및 제거하기 위한 권고 9가지를 제안하였다.

퍼지지식베이스에서의 효율적인 정보검색을 위한 규칙생성 및 근사추론 알고리듬 설계 (Rule Generation and Approximate Inference Algorithms for Efficient Information Retrieval within a Fuzzy Knowledge Base)

  • 김형수
    • 디지털콘텐츠학회 논문지
    • /
    • 제2권2호
    • /
    • pp.103-115
    • /
    • 2001
  • 본 논문은 퍼지지식베이스에서 러프 집합과 요인공간이론을 적용하여 최소 결정규칙 생성과 근사추론 연산을 수행하는 두 개의 알고리듬을 제안한다. 최소 결정규칙의 생성은 속성요인에 관련한 상관분석과 베이지안 정리를 응용한 데이터의 분류기법과 리덕트에 의해 수행된다. 이 결정규칙으로 이루어진 최소지식 베이스의 탐색공간에서 소속함수와 t-norm의 합성 연산을 정의한 근사추론 방식에 의해 특정 객체를 검색한다. 본 연구의 러프와 퍼지연산 모듈을 수행하는 제안 알고리듬 기법을 객체및 속성수를 증가시키는 시뮬레이션을 통해 다른 검색이론 및 합성연산 방식과 비교하였다. 그 결과 다른 제 방법보다 본 연구에서 제안하는 기법이 특정 객체를 추출하기 위한 검색연산 시간에 있어 보다 빠르게 검색됨을 입증하였다.

  • PDF

A Keyword Matching for the Retrieval of Low-Quality Hangul Document Images

  • 나인섭;박상철;김수형
    • 한국문헌정보학회지
    • /
    • 제47권1호
    • /
    • pp.39-55
    • /
    • 2013
  • It is a difficult problem to use keyword retrieval for low-quality Korean document images because these include adjacent characters that are connected. In addition, images that are created from various fonts are likely to be distorted during acquisition. In this paper, we propose and test a keyword retrieval system, using a support vector machine (SVM) for the retrieval of low-quality Korean document images. We propose a keyword retrieval method using an SVM to discriminate the similarity between two word images. We demonstrated that the proposed keyword retrieval method is more effective than the accumulated Optical Character Recognition (OCR)-based searching method. Moreover, using the SVM is better than Bayesian decision or artificial neural network for determining the similarity of two images.