• Title/Summary/Keyword: bayesian classification

Search Result 254, Processing Time 0.024 seconds

Recognition of Korean Vowels using Bayesian Classification with Mouth Shape (베이지안 분류 기반의 입 모양을 이용한 한글 모음 인식 시스템)

  • Kim, Seong-Woo;Cha, Kyung-Ae;Park, Se-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.852-859
    • /
    • 2019
  • With the development of IT technology and smart devices, various applications utilizing image information are being developed. In order to provide an intuitive interface for pronunciation recognition, there is a growing need for research on pronunciation recognition using mouth feature values. In this paper, we propose a system to distinguish Korean vowel pronunciations by detecting feature points of lips region in images and applying Bayesian based learning model. The proposed system implements the recognition system based on Bayes' theorem, so that it is possible to improve the accuracy of speech recognition by accumulating input data regardless of whether it is speaker independent or dependent on small amount of learning data. Experimental results show that it is possible to effectively distinguish Korean vowels as a result of applying probability based Bayesian classification using only visual information such as mouth shape features.

An Automatic Document Classification with Bayesian Learning (베이지안 학습을 이용한 문서의 자동분류)

  • Kim, Jin-Sang;Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • As the number of online documents increases enormously with the expansion of information technology, the importance of automatic document classification is greatly enlarged. In this paper, an automatic document classification method is investigated and applied to UseNet 20 newsgroup articles to test its efficacy. The classification system uses Naive Bayes classification algorithm and the experimental result shows that a randomly selected newsgroup arcicle can be classified into its own category over 77% accuracy.

  • PDF

Development of e-Mail Classifiers for e-Mail Response Management Systems (전자메일 자동관리 시스템을 위한 전자메일 분류기의 개발)

  • Kim, Kuk-Pyo;Kwon, Young-S.
    • Journal of Information Technology Services
    • /
    • v.2 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. in this research we develop e-mail classifiers for e-mail Response Management Systems (ERMS) using naive bayesian learning and centroid-based classification. We analyze which method performs better under which conditions, comparing classification accuracies which may depend on the structure, the size of training data set and number of classes, using the different data set of an on-line shopping mall and a credit card company. The developed e-mail classifiers have been successfully implemented in practice. The experimental results show that naive bayesian learning performs better, while centroid-based classification is more robust in terms of classification accuracy.

Improving Correctness in the Satellite Remote Sensing Data Analysis -Laying Stress on the Application of Bayesian MLC in the Classification Stage- (인공위성 원격탐사 데이타의 분석 정확도 향상에 관한 연구 -분류과정에서의 Bayesian MIC 적용을 중심으로-)

  • 안철호;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 1991
  • This thesis aims to improve the analysis accuracy of remotely sensed digital imagery, and the improvement is achieved by considering the weight factors(a priori probabilities) of Bayesian MLC in the classification stage. To be concrete, Bayesian decision theory is studied from remote sensing field of view, and the equations in the n-dimensional form are derived from normal probability density functions. The amount of the misclassified pixels is extracted from probability function data using the thres-holding, and this is a basis of evaluating the classification accuracy. The results indicate that 5.21% of accuracy improvement was carried out. The data used in this study is LANDSAT TM(1985.10.21 ; 116-34), and the study area is within the administrative boundary of Seoul.

  • PDF

Travel Time Prediction Algorithm Based on Time-varying Average Segment Velocity using $Na{\ddot{i}}ve$ Bayesian Classification ($Na{\ddot{i}}ve$ Bayesian 분류화 기법을 이용한 시간대별 평균 구간 속도 기반 주행 시간 예측 알고리즘)

  • Um, Jung-Ho;Chowdhury, Nihad Karim;Lee, Hyun-Jo;Chang, Jae-Woo;Kim, Yeon-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.31-43
    • /
    • 2008
  • Travel time prediction is an indispensable to many advanced traveler information systems(ATIS) and intelligent transportation systems(ITS). In this paper we propose a method to predict travel time using $Na{\ddot{i}}ve$ Bayesian classification method which has exhibited high accuracy and processing speed when applied to classily large amounts of data. Our proposed prediction algorithm is also scalable to road networks with arbitrary travel routes. For a given route, we consider time-varying average segment velocity to perform more accuracy of travel time prediction. We compare the proposed method with the existing prediction algorithms like link-based prediction algorithm [1] and Micro T* algorithm [2]. It is shown from the performance comparison that the proposed predictor can reduce MARE (mean absolute relative error) significantly, compared with the existing predictors.

  • PDF

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Band Selection Using Forward Feature Selection Algorithm for Citrus Huanglongbing Disease Detection

  • Katti, Anurag R.;Lee, W.S.;Ehsani, R.;Yang, C.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.417-427
    • /
    • 2015
  • Purpose: This study investigated different band selection methods to classify spectrally similar data - obtained from aerial images of healthy citrus canopies and citrus greening disease (Huanglongbing or HLB) infected canopies - using small differences without unmixing endmember components and therefore without the need for an endmember library. However, large number of hyperspectral bands has high redundancy which had to be reduced through band selection. The objective, therefore, was to first select the best set of bands and then detect citrus Huanglongbing infected canopies using these bands in aerial hyperspectral images. Methods: The forward feature selection algorithm (FFSA) was chosen for band selection. The selected bands were used for identifying HLB infected pixels using various classifiers such as K nearest neighbor (KNN), support vector machine (SVM), naïve Bayesian classifier (NBC), and generalized local discriminant bases (LDB). All bands were also utilized to compare results. Results: It was determined that a few well-chosen bands yielded much better results than when all bands were chosen, and brought the classification results on par with standard hyperspectral classification techniques such as spectral angle mapper (SAM) and mixture tuned matched filtering (MTMF). Median detection accuracies ranged from 66-80%, which showed great potential toward rapid detection of the disease. Conclusions: Among the methods investigated, a support vector machine classifier combined with the forward feature selection algorithm yielded the best results.

The performance of Bayesian network classifiers for predicting discrete data (이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교)

  • Park, Hyeonjae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.309-320
    • /
    • 2020
  • Bayesian networks, also known as directed acyclic graphs (DAG), are used in many areas of medicine, meteorology, and genetics because relationships between variables can be modeled with graphs and probabilities. In particular, Bayesian network classifiers, which are used to predict discrete data, have recently become a new method of data mining. Bayesian networks can be grouped into different models that depend on structured learning methods. In this study, Bayesian network models are learned with various properties of structure learning. The models are compared to the simplest method, the naïve Bayes model. Classification results are compared by applying learned models to various real data. This study also compares the relationships between variables in the data through graphs that appear in each model.

A Study on the Improvement of Bayesian networks in e-Trade (전자무역의 베이지안 네트워크 개선방안에 관한 연구)

  • Jeong, Boon-Do
    • International Commerce and Information Review
    • /
    • v.9 no.3
    • /
    • pp.305-320
    • /
    • 2007
  • With expanded use of B2B(between enterprises), B2G(between enterprises and government) and EDI(Electronic Data Interchange), and increased amount of available network information and information protection threat, as it was judged that security can not be perfectly assured only with security technology such as electronic signature/authorization and access control, Bayesian networks have been developed for protection of information. Therefore, this study speculates Bayesian networks system, centering on ERP(Enterprise Resource Planning). The Bayesian networks system is one of the methods to resolve uncertainty in electronic data interchange and is applied to overcome uncertainty of abnormal invasion detection in ERP. Bayesian networks are applied to construct profiling for system call and network data, and simulate against abnormal invasion detection. The host-based abnormal invasion detection system in electronic trade analyses system call, applies Bayesian probability values, and constructs normal behavior profile to detect abnormal behaviors. This study assumes before and after of delivery behavior of the electronic document through Bayesian probability value and expresses before and after of the delivery behavior or events based on Bayesian networks. Therefore, profiling process using Bayesian networks can be applied for abnormal invasion detection based on host and network. In respect to transmission and reception of electronic documents, we need further studies on standards that classify abnormal invasion of various patterns in ERP and evaluate them by Bayesian probability values, and on classification of B2B invasion pattern genealogy to effectively detect deformed abnormal invasion patterns.

  • PDF