• Title/Summary/Keyword: bayesian classification

Search Result 254, Processing Time 0.027 seconds

Adaptation of Classification Model for Improving Speech Intelligibility in Noise (음성 명료도 향상을 위한 분류 모델의 잡음 환경 적응)

  • Jung, Junyoung;Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.511-518
    • /
    • 2018
  • This paper deals with improving speech intelligibility by applying binary mask to time-frequency units of speech in noise. The binary mask is set to "0" or "1" according to whether speech is dominant or noise is dominant by comparing signal-to-noise ratio with pre-defined threshold. Bayesian classifier trained with Gaussian mixture model is used to estimate the binary mask of each time-frequency signal. The binary mask based noise suppressor improves speech intelligibility only in noise condition which is included in the training data. In this paper, speaker adaptation techniques for speech recognition are applied to adapt the Gaussian mixture model to a new noise environment. Experiments with noise-corrupted speech are conducted to demonstrate the improvement of speech intelligibility by employing adaption techniques in a new noise environment.

Rule Generation and Approximate Inference Algorithms for Efficient Information Retrieval within a Fuzzy Knowledge Base (퍼지지식베이스에서의 효율적인 정보검색을 위한 규칙생성 및 근사추론 알고리듬 설계)

  • Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.103-115
    • /
    • 2001
  • This paper proposes the two algorithms which generate a minimal decision rule and approximate inference operation, adapted the rough set and the factor space theory in fuzzy knowledge base. The generation of the minimal decision rule is executed by the data classification technique and reduct applying the correlation analysis and the Bayesian theorem related attribute factors. To retrieve the specific object, this paper proposes the approximate inference method defining the membership function and the combination operation of t-norm in the minimal knowledge base composed of decision rule. We compare the suggested algorithms with the other retrieval theories such as possibility theory, factor space theory, Max-Min, Max-product and Max-average composition operations through the simulation generating the object numbers and the attribute values randomly as the memory size grows. With the result of the comparison, we prove that the suggested algorithm technique is faster than the previous ones to retrieve the object in access time.

  • PDF

The Algorithm Design and Implement of Microarray Data Classification using the Byesian Method (베이지안 기법을 적용한 마이크로어레이 데이터 분류 알고리즘 설계와 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2283-2288
    • /
    • 2006
  • As development in technology of bioinformatics recently makes it possible to operate micro-level experiments, we can observe the expression pattern of total genome through on chip and analyze the interactions of thousands of genes at the same time. Thus, DNA microarray technology presents the new directions of understandings for complex organisms. Therefore, it is required how to analyze the enormous gene information obtained through this technology effectively. In this thesis, We used sample data of bioinformatics core group in harvard university. It designed and implemented system that evaluate accuracy after dividing in class of two using Bayesian algorithm, ASA, of feature extraction method through normalization process, reducing or removing of noise that occupy by various factor in microarray experiment. It was represented accuracy of 98.23% after Lowess normalization.

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.

Multi-focus Image Fusion Technique Based on Parzen-windows Estimates (Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법)

  • Atole, Ronnel R.;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a spatial-level nonparametric multi-focus image fusion technique based on kernel estimates of input image blocks' underlying class-conditional probability density functions. Image fusion is approached as a classification task whose posterior class probabilities, P($wi{\mid}Bikl$), are calculated with likelihood density functions that are estimated from the training patterns. For each of the C input images Ii, the proposed method defines i classes wi and forms the fused image Z(k,l) from a decision map represented by a set of $P{\times}Q$ blocks Bikl whose features maximize the discriminant function based on the Bayesian decision principle. Performance of the proposed technique is evaluated in terms of RMSE and Mutual Information (MI) as the output quality measures. The width of the kernel functions, ${\sigma}$, were made to vary, and different kernels and block sizes were applied in performance evaluation. The proposed scheme is tested with C=2 and C=3 input images and results exhibited good performance.

  • PDF

A Method of Identifying Ownership of Personal Information exposed in Social Network Service (소셜 네트워크 서비스에 노출된 개인정보의 소유자 식별 방법)

  • Kim, Seok-Hyun;Cho, Jin-Man;Jin, Seung-Hun;Choi, Dae-Seon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1103-1110
    • /
    • 2013
  • This paper proposes a method of identifying ownership of personal information in Social Network Service. In detail, the proposed method automatically decides whether any location information mentioned in twitter indicates the publisher's residence area. Identifying ownership of personal information is necessary part of evaluating risk of opened personal information online. The proposed method uses a set of decision rules that considers 13 features that are lexicographic and syntactic characteristics of the tweet sentences. In an experiment using real twitter data, the proposed method shows better performance (f1-score: 0.876) than the conventional document classification models such as naive bayesian that uses n-gram as a feature set.

A Method for Spam Message Filtering Based on Lifelong Machine Learning (Lifelong Machine Learning 기반 스팸 메시지 필터링 방법)

  • Ahn, Yeon-Sun;Jeong, Ok-Ran
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1393-1399
    • /
    • 2019
  • With the rapid growth of the Internet, millions of indiscriminate advertising SMS are sent every day because of the convenience of sending and receiving data. Although we still use methods to block spam words manually, we have been actively researching how to filter spam in a various ways as machine learning emerged. However, spam words and patterns are constantly changing to avoid being filtered, so existing machine learning mechanisms cannot detect or adapt to new words and patterns. Recently, the concept of Lifelong Learning emerged to overcome these limitations, using existing knowledge to keep learning new knowledge continuously. In this paper, we propose a method of spam filtering system using ensemble techniques of naive bayesian which is most commonly used in document classification and LLML(Lifelong Machine Learning). We validate the performance of lifelong learning by applying the model ELLA and the Naive Bayes most commonly used in existing spam filters.

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

Analysis of User Head Motion for Motion Classifier of Motion Headset (모션헤드셋의 동작분류기를 위한 사용자 머리동작 분석)

  • Shin, Choonsung;Lee, Youngho
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • Recently, various types of wearable computers have been studied. In this paper, we analyze the characteristics of head motion information for the operation of the motion classifier produced motion headset that the user can use while listening to music. The prototype receives music from smart phone over bluetooth communications, and transmits the motion information measured by the acceleration sensor to the smart phone. And the smartphone classifies the motion of the head through a motion classifier. we implemented a prototype for our experiment. The user's head motion "up", "down", "left" and "right" were classified using a Bayesian classifier. As a result, in case of the movement of the head "up" and "down", there are a large changes in the x, z-axis values. In future we have a plan to perform a user study to find suitable variables for creating motion classifier.

Active Vision from Image-Text Multimodal System Learning (능동 시각을 이용한 이미지-텍스트 다중 모달 체계 학습)

  • Kim, Jin-Hwa;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.795-800
    • /
    • 2016
  • In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.