• Title/Summary/Keyword: bayesian classification

Search Result 254, Processing Time 0.032 seconds

Performance Comparison of Machine Learning Algorithms for TAB Digit Recognition (타브 숫자 인식을 위한 기계 학습 알고리즘의 성능 비교)

  • Heo, Jaehyeok;Lee, Hyunjung;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

An Efficient Method for Detecting Denial of Service Attacks Using Kernel Based Data (커널 기반 데이터를 이용한 효율적인 서비스 거부 공격 탐지 방법에 관한 연구)

  • Chung, Man-Hyun;Cho, Jae-Ik;Chae, Soo-Young;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • Currently much research is being done on host based intrusion detection using system calls which is a portion of kernel based data. Sequence based and frequency based preprocessing methods are mostly used in research for intrusion detection using system calls. Due to the large amount of data and system call types, it requires a significant amount of preprocessing time. Therefore, it is difficult to implement real-time intrusion detection systems. Despite this disadvantage, the frequency based method which requires a relatively small amount of preprocessing time is usually used. This paper proposes an effective method for detecting denial of service attacks using the frequency based method. Principal Component Analysis(PCA) will be used to select the principle system calls and a bayesian network will be composed and the bayesian classifier will be used for the classification.

A New Image Analysis Method based on Regression Manifold 3-D PCA (회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • In this paper, we propose a new image analysis method based on regression manifold 3-D PCA. The proposed method is a new image analysis method consisting of a regression analysis algorithm with a structure designed based on an autoencoder capable of nonlinear expansion of manifold 3-D PCA and PCA for efficient dimension reduction when entering large-capacity image data. With the configuration of an autoencoder, a regression manifold 3-DPCA, which derives the best hyperplane through three-dimensional rotation of image pixel values, and a Bayesian rule structure similar to a deep learning structure, are applied. Experiments are performed to verify performance. The image is improved by utilizing the fine dust image, and accuracy performance evaluation is performed through the classification model. As a result, it can be confirmed that it is effective for deep learning performance.

An Active Learning-based Method for Composing Training Document Set in Bayesian Text Classification Systems (베이지언 문서분류시스템을 위한 능동적 학습 기반의 학습문서집합 구성방법)

  • 김제욱;김한준;이상구
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.966-978
    • /
    • 2002
  • There are two important problems in improving text classification systems based on machine learning approach. The first one, called "selection problem", is how to select a minimum number of informative documents from a given document collection. The second one, called "composition problem", is how to reorganize selected training documents so that they can fit an adopted learning method. The former problem is addressed in "active learning" algorithms, and the latter is discussed in "boosting" algorithms. This paper proposes a new learning method, called AdaBUS, which proactively solves the above problems in the context of Naive Bayes classification systems. The proposed method constructs more accurate classification hypothesis by increasing the valiance in "weak" hypotheses that determine the final classification hypothesis. Consequently, the proposed algorithm yields perturbation effect makes the boosting algorithm work properly. Through the empirical experiment using the Routers-21578 document collection, we show that the AdaBUS algorithm more significantly improves the Naive Bayes-based classification system than other conventional learning methodson system than other conventional learning methods

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Spectral Properties of the Sound From the Mechanical Valve Employed in an Implantable Biventricular Assist Device (이식형 양심실 보조 장치에 사용된 기계식 판막의 음향 스펙트럼 특성)

  • 최민주;이서우;이혁수;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • This paper considers the acoustical characteristics of the closing click sounds of the mechanical valves employed in an implantable biventricular assist device (BYAD) and their re1evance to the Physical states of the valved. Bj rk Shiley Convexo Concave tilting disk valve was chosen for the study and acoustic measurement was made for the BYAD operated in a mock circulatory system as well as implanted in an animal (sheep). In the BYAD operated in the mock circulatory system. three different states of the valve were examined, ie. normal. mechanically damaged. pseudo-thrombus attached. Microphone measurement for the BVAD implanted in the animal was carried out for five days at a regular time interval from one day after implantation. Characteristic spectrum of the sound from the valve was estimated using Multiple Signal Classification (MUSIC) in which the optimal order was determined according to Bayesian Information Criterion (BIC) . It was observed that the mechanical damage of the valve resulted in changes of the structure of the acoustic spectrum. In contrast. the thrombus formed on the valve did not change much the basic structure of the spectrum but brought about altering the spectral Peak frequencies and energies. Maximum spectral Peak (MSP) with the greatest energy was seen at 2 kHz for the normal valve and it was shifted to 3 kHz for the calve attaching the Pseudo-thrombus. Unlike the normal valve, strong spectral Peak appeared around 7 kHz in the sound from the valve mechanically damaged. In the case of the BYAD implanted in the animal. as the thrombus grew, acoustic energy was reduced relatively more in the low frequency components (〈 2 kHz) and the frequencies of the 1st, 2nd and 3rd MSP were increased little. The thrombus formation would result in reduction in both the variability of the 1st, 2nd and 3rd MSP and the value of the BIC optimal order.

  • PDF

A Learning Agent for Automatic Bookmark Classification (북 마크 자동 분류를 위한 학습 에이전트)

  • Kim, In-Cheol;Cho, Soo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.455-462
    • /
    • 2001
  • The World Wide Web has become one of the major services provided through Internet. When searching the vast web space, users use bookmarking facilities to record the sites of interests encountered during the course of navigation. One of the typical problems arising from bookmarking is that the list of bookmarks lose coherent organization when the the becomes too lengthy, thus ceasing to function as a practical finding aid. In order to maintain the bookmark file in an efficient, organized manner, the user has to classify all the bookmarks newly added to the file, and update the folders. This paper introduces our learning agent called BClassifier that automatically classifies bookmarks by analyzing the contents of the corresponding web documents. The chief source for the training examples are the bookmarks already classified into several bookmark folders according to their subject by the user. Additionally, the web pages found under top categories of Yahoo site are collected and included in the training examples for diversifying the subject categories to be represented, and the training examples for these categories as well. Our agent employs naive Bayesian learning method that is a well-tested, probability-based categorizing technique. In this paper, the outcome of some experimentation is also outlined and evaluated. A comparison of naive Bayesian learning method alongside other learning methods such as k-Nearest Neighbor and TFIDF is also presented.

  • PDF

Comprehensive analysis of deep learning-based target classifiers in small and imbalanced active sonar datasets (소량 및 불균형 능동소나 데이터세트에 대한 딥러닝 기반 표적식별기의 종합적인 분석)

  • Geunhwan Kim;Youngsang Hwang;Sungjin Shin;Juho Kim;Soobok Hwang;Youngmin Choo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.329-344
    • /
    • 2023
  • In this study, we comprehensively analyze the generalization performance of various deep learning-based active sonar target classifiers when applied to small and imbalanced active sonar datasets. To generate the active sonar datasets, we use data from two different oceanic experiments conducted at different times and ocean. Each sample in the active sonar datasets is a time-frequency domain image, which is extracted from audio signal of contact after the detection process. For the comprehensive analysis, we utilize 22 Convolutional Neural Networks (CNN) models. Two datasets are used as train/validation datasets and test datasets, alternatively. To calculate the variance in the output of the target classifiers, the train/validation/test datasets are repeated 10 times. Hyperparameters for training are optimized using Bayesian optimization. The results demonstrate that shallow CNN models show superior robustness and generalization performance compared to most of deep CNN models. The results from this paper can serve as a valuable reference for future research directions in deep learning-based active sonar target classification.

A Fundamental Study on Analysis of Electromotive Force and Updating of Vibration Power Generating Model on Subway Through The Bayesian Regression and Correlation Analysis (베이지안 회귀 및 상관분석을 통한 지하철 진동발전 모델의 수정과 기전력 분석)

  • Jo, Byung-Wan;Kim, Young-Seok;Kim, Yun-Sung;Kim, Yun-Gi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • This study is to update of vibration power generating model and to analyze electromotive force on subway. Analysis of electromotive force using power generation depending on classification of locations which are ballast bed and concrete bed. As the section between Seocho and Bangbae in the line 2 subway was changed from ballast bed to concrete bed, it could be analyzed at same condition, train, section. Induced electromotive force equation by Faraday's law was updated using Bayesian regression and correlation analysis with calculate value and experiment value. Using the updated model, it could get 40mV per one power generation in ballast bed, and it also could get 4mV per one power generation in concrete bed. If the updated model apply to subway or any train, it will be more effective to get electric power. In addition to that, it will be good to reduce greenhouse gas and to build a green traffic network.