• Title/Summary/Keyword: bayesian classification

Search Result 254, Processing Time 0.027 seconds

Bayesian Classification Method for Diagnosing Heart Disease (심장 질환 진단을 위한 베이지안 분류 기법)

  • Shon Ho-Sun;Lee Heon-Gyu;Cho Kyung-Hwan;Ryu Keun-Ho;Noh Ki-Yong
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.39-42
    • /
    • 2006
  • 심전도는 각종심장질환 들을 예측하는데 널리 사용되고 있다. 이러한 심전도에서 ST-분절은 허혈성 심장 질환, 확장성 심근성, 비후성 심근증 등을 예측하는데 이용되고 있다. 이 논문에서는 환자들의 임상 정보와 심전도로부터 심장 질환 예측을 위한 중요 파라미터인 ST-부절을 추출하였다. 그리고 이러한 추출된 데이터 분석을 위해서 데이터마이닝 기법을 적용한다. 데이터마이닝의 분류 알고리즘인 베이지안 네트워크를 적용 심장 질환을 효율적으로 분류하기 위한 방법을 제시 하였다.

  • PDF

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

Performance Improvement of a Text-Independent Speaker Identification System Using MCE Training (MCE 학습 알고리즘을 이용한 문장독립형 화자식별의 성능 개선)

  • Kim Tae-Jin;Choi Jae-Gil;Kwon Chul-Hong
    • MALSORI
    • /
    • no.57
    • /
    • pp.165-174
    • /
    • 2006
  • In this paper we use a training algorithm, MCE (Minimum Classification Error), to improve the performance of a text-independent speaker identification system. The MCE training scheme takes account of possible competing speaker hypotheses and tries to reduce the probability of incorrect hypotheses. Experiments performed on a small set speaker identification task show that the discriminant training method using MCE can reduce identification errors by up to 54% over a baseline system trained using Bayesian adaptation to derive GMM (Gaussian Mixture Models) speaker models from a UBM (Universal Background Model).

  • PDF

Semi-Supervised Learning by Gaussian Mixtures (정규 혼합분포를 이용한 준지도 학습)

  • Choi, Byoung-Jeong;Chae, Youn-Seok;Choi, Woo-Young;Park, Chang-Yi;Koo, Ja-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.825-833
    • /
    • 2008
  • Discriminant analysis based on Gaussian mixture models, an useful tool for multi-class classifications, can be extended to semi-supervised learning. We consider a model selection problem for a Gaussian mixture model in semi-supervised learning. More specifically, we adopt Bayesian information criterion to determine the number of subclasses in the mixture model. Through simulations, we illustrate the usefulness of the criterion.

The Emotion Recognition System through The Extraction of Emotional Components from Speech (음성의 감성요소 추출을 통한 감성 인식 시스템)

  • Park Chang-Hyun;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.763-770
    • /
    • 2004
  • The important issue of emotion recognition from speech is a feature extracting and pattern classification. Features should involve essential information for classifying the emotions. Feature selection is needed to decompose the components of speech and analyze the relation between features and emotions. Specially, a pitch of speech components includes much information for emotion. Accordingly, this paper searches the relation of emotion to features such as the sound loudness, pitch, etc. and classifies the emotions by using the statistic of the collecting data. This paper deals with the method of recognizing emotion from the sound. The most important emotional component of sound is a tone. Also, the inference ability of a brain takes part in the emotion recognition. This paper finds empirically the emotional components from the speech and experiment on the emotion recognition. This paper also proposes the recognition method using these emotional components and the transition probability.

Learning Bayesian Networks for Text Documents Classification (텍스트 문서 분류를 위한 베이지안망 학습)

  • 황규백;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.262-264
    • /
    • 2000
  • 텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.

  • PDF

User Preference Prediction Method Using Associative User Clustering and Bayesian Classification (연관 사용자 군집과 베이지안 분류를 이용한 사용자 선호도 예측 방법)

  • 정경용;김진현;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.109-111
    • /
    • 2001
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법(Nearest-Neighborhood Method)을 사용하고, 피어슨 상관 계수에 의해 사용자의 유사도를 구하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 연관 사용자 군집과 베이지안 분류를 이음한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성(Sparsity)문제를 해결하기 위하여 ARHP 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도출 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Study on the Recognition of Spoken Korean Continuous Digits Using Phone Network (음성망을 이용한 한국어 연속 숫자음 인식에 관한 연구)

  • Lee, G.S.;Lee, H.J.;Byun, Y.G.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.624-627
    • /
    • 1988
  • This paper describes the implementation of recognition of speaker - dependent Korean spoken continuous digits. The recognition system can be divided into two parts, acoustic - phonetic processor and lexical decoder. Acoustic - phonetic processor calculates the feature vectors from input speech signal and the performs frame labelling and phone labelling. Frame labelling is performed by Bayesian classification method and phone labelling is performed using labelled frame and posteriori probability. The lexical decoder accepts segments (phones) from acoustic - phonetic processor and decodes its lexical structure through phone network which is constructed from phonetic representation of ten digits. The experiment carried out with two sets of 4continuous digits, each set is composed of 35 patterns. An evaluation of the system yielded a pattern accuracy of about 80 percent resulting from a word accuracy of about 95 percent.

  • PDF

Comments Classification System using Topic Signature and n-gram (Topic signatur e와 n-gram을 이용한 댓글 분류 시스템)

  • Bae, Min-Young;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.189-194
    • /
    • 2008
  • 본 논문에서는 토픽 시그너처(Topic Signature)와 n-gram을 이용한 댓글 분류 시스템을 개발한다. 토픽 시그너처는 문서요약이나 문서분류에서 자질 선택을 위한 방법으로 많이 사용되어지며, n-gram은 모든 언어에 적용 가능한 장점이 있다. 악성댓글은 대체로 문장 길이가 짧고 유행어나 변형어의 출현 빈도가 높으며 비정형화된 특징이 있다. 따라서 우리는 댓글을 n-gram으로 나누어 자질로 선택한다. 분류를 위해 베이지안(Bayesian)모델을 사용하였다. 본 논문에서는 한글과 영어 댓글에 대한 판별 실험을 통하여 구현한 시스템이 복잡한 전처리 과정이 필요한 기존에 제안된 방법들보다 더 나은 성능을 보이며, 언어에 관계없이 적용 가능하다는 것을 실험 결과를 통해 확인할 수 있었다.

  • PDF

BClassifier : A Bookmark-Classification Agent Based on Naive Bayesian Learning Method (BClassifier : 나이브 베이지안 학습법에 기초한 북마크 분류 에이전트)

  • 최정민;김인철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.81-83
    • /
    • 2000
  • 최근 고성능 PC의 보급과 네트워크의 발달로 인하여 인터넷의 가용 정보가 폭발적으로 증가하고 있다. 이러한 추세에 따라 우리는 인터넷을 사용하여 많은 정보를 얻고 있다. 그러나 인터넷에 존재하는 정보는 수많은 웹 서버에 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심 있는 정보의 사이트를 재방문하기 위하여 웹 브라우저 북 마크 기능을 사용한다. 그러나, 북 마크를 효율적으로 사용하기 위해서는 북 마크 분류, 수정, 편집, 정렬등의 북 마크 관리가 필수적이지만 이와 같은 북 마크 관리 작업이 전반적으로 수작업으로 이루어져야 하는 단점이 있다. 이러한 문제점을 해결하기 위한 한가지 방법으로 웹 문서 분류를 위한 기계학습법을 적용하여 사용자의 북 마크를 카테고리별로 자동으로 분류, 재정렬해주는 북 마크 자동 분류 에이전트를 개발하고자 한다. 대표적인 분류 에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스 기사 분류 에이전트인 NewT, 엔터테인먼트 선별 에이전트인 Ringo 등이 있으며, 이러한 시스템들은 분류 대상과 분류 방법, 기능 등에서 차이를 보이고 있다. 본 논문에서는 대표적인 교사학습 방법인 나이브 베이지안 학습법을 사용하여 북 마크를 자동으로 분류하는 북 마크 자동 분류 에이전트를 설계, 구현하였다.

  • PDF