• Title/Summary/Keyword: bayesian

Search Result 2,741, Processing Time 0.028 seconds

Sensitivity assessment of environmental drought based on Bayesian Network model in the Nakdong River basin (베이지안 네트워크 모형 기반의 환경적 가뭄의 민감도 평가: 낙동강 유역을 대상으로)

  • Yoo, Jiyoung;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.79-79
    • /
    • 2021
  • 기상학적 측면에서 강수 부족으로 인한 수생태환경(하천), 호소환경(저수지) 및 유역환경(중권역)으로 미치는 환경학적 가뭄의 영향을 평가하기 위한 시도는 매우 중요하다. 만약 동일한 규모의 강수부족 현상이 발생할지라도, 환경적 측면에서의 수질 및 수생태에 미치는 영향이 매우 큰 유역이 있고, 반면 어느 정도의 복원력을 유지할 수 있는 유역이 있을 것이다. 즉, 서로 다른 유역환경에 따라 가뭄으로 인한 환경적 영향은 달라질 가능성이 크며, 이처럼 환경적 가뭄에 취약한 지역을 위해서는 지속적인 환경가뭄 모니터링이 중요하다. 환경적 측면에서 가뭄의 영향을 평가하기 위해서는 다양한 수질 관련 항목을 연계한 환경가뭄 감시가 중요하며, 이와 더불어 가뭄과 관련한 다양한 이해관계자 간의 효율적인 의사결정 도구가 필요하다. 따라서 본 연구에서는 다양한 시나리오 정보를 제공할 수 있는 베이지안 네트워크 모형을 적용하여 환경가뭄 민감도 평가 방안을 제시하고자 한다. 본 모형에서는 수질 문제가 가장 심하게 대두되고 있는 낙동강 유역을 대상으로, 기상학적 가뭄에 의한 수생태 및 환경 관련 변수들(BOD, T-P, TOC)의 복잡한 상호의존성을 파악할 수 있는 베이지안 네트워크 모형을 활용하였다. 또한, 기상학적 가뭄에 의한 상류와 하류 간의 환경적 영향을 연계하여 해석하기 위한 모형을 구축하였다. 그 결과, 기상학적 가뭄으로 인한 환경적 민감도가 크게 나타나는 중권역(예: 임하댐유역)과 이와 반대인 중권역(예: 병성천유역)의 구분이 가능하였다. 또한, 상류에서 발생한 심한 기상학적 가뭄이 하류 지역 내 환경적인 영향을 지속할 가능성이 있음을 확인되었다. 따라서 본 연구에서 제안한 방법은 환경적 가뭄의 취약지역을 우선 선정하고, 나아가 상-하류 간의 환경적 가뭄을 감시하는 데 있어 활용도가 있을 것으로 기대된다.

  • PDF

Machine Learning-based Data Analysis for Designing High-strength Nb-based Superalloys (고강도 Nb기 초내열 합금 설계를 위한 기계학습 기반 데이터 분석)

  • Eunho Ma;Suwon Park;Hyunjoo Choi;Byoungchul Hwang;Jongmin Byun
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.217-222
    • /
    • 2023
  • Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.

Framework for improving the prediction rate with respect to outdoor thermal comfort using machine learning

  • Jeong, Jaemin;Jeong, Jaewook;Lee, Minsu;Lee, Jaehyun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.119-127
    • /
    • 2022
  • Most of the construction works are conducted outdoors, so the construction workers are affected by weather conditions such as temperature, humidity, and wind velocity which can be evaluated the thermal comfort as environmental factors. In our previous researches, it was found that construction accidents are usually occurred in the discomfort ranges. The safety management, therefore, should be planned in consideration of the thermal comfort and measured by a specialized simulation tool. However, it is very complex, time-consuming, and difficult to model. To address this issue, this study is aimed to develop a framework of a prediction model for improving the prediction accuracy about outdoor thermal comfort considering environmental factors using machine learning algorithms with hyperparameter tuning. This study is done in four steps: i) Establishment of database, ii) Selection of variables to develop prediction model, iii) Development of prediction model; iv) Conducting of hyperparameter tuning. The tree type algorithm is used to develop the prediction model. The results of this study are as follows. First, considering three variables related to environmental factor, the prediction accuracy was 85.74%. Second, the prediction accuracy was 86.55% when considering four environmental factors. Third, after conducting hyperparameter tuning, the prediction accuracy was increased up to 87.28%. This study has several contributions. First, using this prediction model, the thermal comfort can be calculated easily and quickly. Second, using this prediction model, the safety management can be utilized to manage the construction accident considering weather conditions.

  • PDF

Real-time prediction on the slurry concentration of cutter suction dredgers using an ensemble learning algorithm

  • Han, Shuai;Li, Mingchao;Li, Heng;Tian, Huijing;Qin, Liang;Li, Jinfeng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.463-481
    • /
    • 2020
  • Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.

  • PDF

Movie Choice under Joint Decision: Reassessment of Online WOM Effect

  • Kim, Youngju;Kim, Jaehwan
    • Asia Marketing Journal
    • /
    • v.15 no.1
    • /
    • pp.155-168
    • /
    • 2013
  • This study describes consumers' movie choices in conjunction with other group members and attempts to reassess the effect of the online word of mouth (WOM) source in a joint decision context. The tendency of many people to go to movies in groups has been mentioned in previous literature but there is no modeling research that studies movie choice from the group decision perspective. We found that ignoring the group movie-going perspective can result in a misunderstanding, especially underestimation of genre preference and the impact of the WOM variables. Most of the studies to measure online WOM effects were done at the aggregate level, and the role of online WOM variables(volume vs valence) is mixed in the literature. We postulate that group-level analysis might offer insight to resolve these mixed understanding of WOM effects in the literature. We implemented the study via a random effect model with group-level heterogeneity. Romance, drama, and action were selected as genre variables; valence and volume were selected as online WOM variables. A choice-based conjoint survey was used for data collection and the models was estimated via Bayesian MCMC method. The empirical results show that (i) both genre and online WOM are important variables when consumers choose movies, especially as group, and (ii) the WOM valence effect are amplified more than the volume effect does as individuals are engaged in group decision. This research contributes to the literature in several ways. First, we investigate movie choice from a group movie-going perspective that is more realistic and consistent with the market behavior. Secondly, the study sheds new light on the WOM effect. At group-level, both valence and volume significantly affect movie choices, which adds to the understanding of the role of online WOM in consumers' movie choice.

  • PDF

Application of deep learning with bivariate models for genomic prediction of sow lifetime productivity-related traits

  • Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.622-630
    • /
    • 2024
  • Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.

Refractive-index Prediction for High-refractive-index Optical Glasses Based on the B2O3-La2O3-Ta2O5-SiO2 System Using Machine Learning

  • Seok Jin Hong;Jung Hee Lee;Devarajulu Gelija;Woon Jin Chung
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.230-238
    • /
    • 2024
  • The refractive index is a key material-design parameter, especially for high-refractive-index glasses, which are used for precision optics and devices. Increased demand for high-precision optical lenses produced by the glass-mold-press (GMP) process has spurred extensive studies of proper glass materials. B2O3, SiO2, and multiple heavy-metal oxides such as Ta2O5, Nb2O5, La2O3, and Gd2O3 mostly compose the high-refractive-index glasses for GMP. However, due to many oxides including up to 10 components, it is hard to predict the refractivity solely from the composition of the glass. In this study, the refractive index of optical glasses based on the B2O3-La2O3-Ta2O5-SiO2 system is predicted using machine learning (ML) and compared to experimental data. A dataset comprising up to 271 glasses with 10 components is collected and used for training. Various ML algorithms (linear-regression, Bayesian-ridge-regression, nearest-neighbor, and random-forest models) are employed to train the data. Along with composition, the polarizability and density of the glasses are also considered independent parameters to predict the refractive index. After obtaining the best-fitting model by R2 value, the trained model is examined alongside the experimentally obtained refractive indices of B2O3-La2O3-Ta2O5-SiO2 quaternary glasses.

Association of heavy metal complex exposure and neurobehavioral function of children

  • Minkeun Kim;Chulyong Park;Joon Sakong;Shinhee Ye;So young Son;Kiook Baek
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.23.1-23.14
    • /
    • 2023
  • Background: Exposure to heavy metals is a public health concern worldwide. Previous studies on the association between heavy metal exposure and neurobehavioral functions in children have focused on single exposures and clinical manifestations. However, the present study evaluated the effects of heavy metal complex exposure on subclinical neurobehavioral function using a Korean Computerized Neurobehavior Test (KCNT). Methods: Urinary mercury, lead, cadmium analyses as well as symbol digit substitution (SDS) and choice reaction time (CRT) tests of the KCNT were conducted in children aged between 10 and 12 years. Reaction time and urinary heavy metal levels were analyzed using partial correlation, linear regression, Bayesian kernel machine regression (BKMR), the weighted quantile sum (WQS) regression and quantile G-computation analysis. Results: Participants of 203 SDS tests and 198 CRT tests were analyzed, excluding poor cooperation and inappropriate urine sample. Partial correlation analysis revealed no association between neurobehavioral function and exposure to individual heavy metals. The result of multiple linear regression shows significant positive association between urinary lead, mercury, and CRT. BMKR, WQS regression and quantile G-computation analysis showed a statistically significant positive association between complex urinary heavy metal concentrations, especially lead and mercury, and reaction time. Conclusions: Assuming complex exposures, urinary heavy metal concentrations showed a statistically significant positive association with CRT. These results suggest that heavy metal complex exposure during childhood should be evaluated and managed strictly.

Assessing reproductive performance and predictive models for litter size in Landrace sows under tropical conditions

  • Praew Thiengpimol;Skorn Koonawootrittriron;Thanathip Suwanasopee
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1333-1344
    • /
    • 2024
  • Objective: Litter size and piglet loss at birth significantly impact piglet production and are closely associated with sow parity. Understanding how these traits vary across different parities is crucial for effective herd management. This study investigates the patterns of the number of born alive piglets (NBA), number of piglet losses (NPL), and the proportion of piglet losses (PPL) at birth in Landrace sows under tropical conditions. Additionally, it aims to identify the most suitable model for describing these patterns. Methods: A dataset comprising 2,322 consecutive reproductive records from 258 Landrace sows, spanning parities from 1 to 9, was analyzed. Modeling approaches including 2nd and 3rd degree polynomial models, the Wood gamma function, and a longitudinal model were applied at the individual level to predict NBA, NPL, and PPL. The choice of the best-fitting model was determined based on the lowest mean and standard deviation of the difference between predicted and actual values, Akaike information criterion (AIC), and Bayesian information criterion (BIC). Results: Sow parity significantly influenced NBA, NPL, and PPL (p<0.0001). NBA increased until the 4th parity and then declined. In contrast, NPL and PPL decreased until the 2nd parity and then steadily increased until the 8th parity. The 2nd and 3rd degree polynomials, and longitudinal models showed no significant differences in predicting NBA, NPL, and PPL (p>0.05). The 3rd degree polynomial model had the lowest prediction standard deviation and yielded the smallest AIC and BIC. Conclusion: The 3rd degree polynomial model offers the most suitable description of NBA, NPL, and PPL patterns. It holds promise for applications in genetic evaluations to enhance litter size and reduce piglet loss at birth in sows. These findings highlight the importance of accounting for sow parity effects in swine breeding programs, particularly in tropical conditions, to optimize piglet production and sow performance.

Ramipedicella gen. nov. (Ralfsiales, Phaeophyceae): a new crustose brown algal genus including two species, Ramipedicella miniloba sp. nov. and Ramipedicella longicellularis comb. nov.

  • Antony Otinga Oteng'o;Boo Yeon Won;Tae Oh Cho
    • ALGAE
    • /
    • v.39 no.2
    • /
    • pp.97-108
    • /
    • 2024
  • The Ralfsiaceae family, part of the Ralfsiales order and consisting of crustose brown algae, includes five genera: Analipus, Endoplura, Fissipedicella, Heteroralfsia, and Ralfsia. In this study, a novel crustose genus named Ramipedicella gen. nov. is introduced within the Ralfsiaceae based on molecular and morphological analyses. Phylogenetic analyses using both concatenated dataset (rbcL + COI-5P genes) and rbcL indicate that the crustose brown algae that we collected from Korea and Russia form a unique grouping within the Ralfsiaceae. This grouping is strongly supported by both bootstrap analysis and Bayesian posterior probabilities. The genetic differences in the rbcL and COI-5P sequences between Ramipedicella and other genera within Ralfsiaceae range from 6.7 to 9.3% for rbcL and from 15.5 to 20.8% for COI-5P. Ramipedicella is characterized by crustose thalli having new crusts growing on top of old ones with a hypothallial basal layer and erect perithallial filaments, long cells with width-to-length ratio of 1 : 1-16, single chloroplast per cell, plurangia with one to several sterile cells, one to several unangia produced from unicellular stalks or from the lateral-basal region to the paraphyses, and unangia arising sequencially in irregularly branched specialized filaments. Ramipedicella, the recently identified genus, comprises two distinct species. Ramipedicella miniloba, the type species, is distinguished by crusts with small lobes, numerous hair tufts, plurangia terminated by 1-4 sterile cells, and large oblong unangia. Ramipedicella longicellularis is identified by generally smooth crusts, absence of phaeophycean hairs, plurangia terminated by 1-2 apical sterile cells, and smaller mostly oblanceolate unangia.