• Title/Summary/Keyword: battery power

Search Result 2,716, Processing Time 0.028 seconds

Analysis of Industrial Battery lifetime Using Instantaneous Discharge Test (순간방전 시험에 의한 산업용 축전지 잔존수명 분석)

  • Kim, Chong-Min;Bang, Sun-Bae;Shong, Kil-Mok;Kim, Sun-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.123-124
    • /
    • 2008
  • Battery is one of the emergency power. Battery reliability is a very important to keep up the minimum of building capabilities in case of interruption of electric power. Instantaneous discharge test is carried out for measuring transient voltage change(${\Delta}V$) and internal instantaneous impedance(Z), and then it is compared with discharge test results for the estimating the battery capacity. As a result, it was confirmed that the voltage change(${\Delta}V$) and the instantaneous impedance of the batteries failed in actual discharge test were higher that those of the sound batteries. Such an instantaneous discharge test can be a diagnosis of battery sound.

  • PDF

Design of a cycler system for large capacity lithium-polymer battery (중대형 리튬폴리머 2차전지용 충방전기 개발)

  • Oh Dong-Seob;Oh Sung-Up;Lee Jong-Yun;Park Min-Ho;Seong Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.82-86
    • /
    • 2004
  • In this paper, a cycler system for the Lithium-Polymer battery with the large capacity of 120Ah is presented. This system is constituted as the two units for the charging and discharging. The Lithium-Polymer battery should be charged in CC and CV mode, and it is required a very high precision control of the voltage and current for the charging unit. To decrease the switching noises and harmonics, parallel operation method is adopted and utilized in the power conversion module. The discharging unit has a link AC system function to return the discharging energy of battery to AC line and has comparatively less thermal loss. These units are designed to be controlled and monitored by personal computer. The total system for the battery charging and discharging is described and presented.

  • PDF

An Analysis of Battery Charger$\cdot$Dischrger using Parallel Connected Bi-directional Converter (대용량 병렬 양방향 컨버터를 이용한 배터리 충$\cdot$방전기 해석)

  • Choi Jae-dong;Ahn Jae-whang;Seong Se-jin
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.773-776
    • /
    • 2002
  • The battery charger of spacecraft has two different modes of operation respectively. One is the bus voltage regulation mode and the other is the charge current regulation mode. And also the battery discharger provide the power during eclipse mode of spacecraft. In this study, a test model of the battery charger and discharger using hi-directional converter are designed and analyzed. These Battery Charger and Discharger is introduced the modular converter method that can be added the converter modules according to the load variation.

  • PDF

Fabrication of Battery Checking & Monitoring System (밧데리 진단 및 감시장치 제작)

  • Lee, Sang-Cheol;Na, Chae-Dong;Yoo, Jae-Moon;Choi, Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2156-2159
    • /
    • 1998
  • This paper describes a Battery Checking & Monitoring System for monitoring battery cell and power system in Uninterruptible Power Supplies(UPS). The system is capable of measuring, in a matter of setting time, float and discharge voltage of up to 240 cells in a single installation, and has the memory capacity to store battery's alarm data information on up to 200 separate sites. This system are easy to maintain and attain cost effectively, so that prepared for meeting the customer's service needs immediately. The system is additionally programmed with a each model, that will enable to accurately determine the remain battery capacity in a UPS system following a short discharge test. It is also equipped with remote interrogation and control facilities.

  • PDF

A Study on Optimal Battery Capacity with Windfarm Considering Reliability Cost (신뢰도비용을 고려한 풍력발전에 연계된 배터리의 최적 용량에 관한 연구)

  • Kim, Wook-Won;Kim, Sung-Yul;Kim, Kyu-Ho;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.273-278
    • /
    • 2011
  • By introducing RPS(Renewable Portfolio Standard) for reduction of greenhouse gas, Renewable energy has becoming widespread gradually. Due to a large number of advantages, wind power, which is one of Renewable energy, has standing in the spot-light rather than other Renewable energy. Wind power, however, is difficult to control output and because of severe output fluctuation, it would cause some problems when it is connected with system. Using battery as a solution for these problems has been researched all over the world. In this paper, the reliability modeling of windfarm connected battery and reliability evaluation of system are executed. Also the optimum battery capacity is selected through evaluating reliability cost.

Calculation of capacity of solar cell and battery for stable solar system design (안정적인 태양광발전시스템의 설계를 위한 태양전지와 배터리 용량산정 방안)

  • Lee Mi-Young;Lee Jun-Ha;Lee Hoong-Joo;Lee Woo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.396-400
    • /
    • 2005
  • Solar cell and battery capacity are very important for stable design of stand-alone solar photovoltaic power generation system. If capacity computation of solar cell and battery is a wrong, operation of the solar system becomes unstable and results in breakdown. Therefore, in this paper, a solar cell and battery capacity calculation method considering the load characteristics has been proposed for the stable operation of the solar photovoltaic power generation system.

  • PDF

The Research on the Modeling and Parameter Optimization of the EV Battery (전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

A Study on the Development of Battery Energy Storage System (전지이용 전력저장장치 기술개발)

  • Hwang, Yong-Ha;Lee, Keun-Seob
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.905-907
    • /
    • 1993
  • Demand for electricity is increasing annually. Especially, the daytime demand grawth shows higher than any other time period. So the big difference between maximum and minimum electrical demand becomes another important problem to be solved. The Battery Energy Storage System is chosen as one of the solutions among the sevral methods. The purpose of utilization of Battery Energy Storage System is to improve the daily load factor. Also, Battery Energy Storage System may be used for the load levelling or the load shifting as well as the spinning reserve. Up to now, only the pumped hydro power plant system has been operated on the commercial basis, but this system has so many constraints such as site, environmental effects, construction period, ect. Being considered current electrical power situation the development of electric storage system is in need latly. Among the various electric storage systems, Battery Energy System is chosen with the top priority because it has sevral merits to cover such as the short construction period, the demand site installation, and the food environmental characteristics.

  • PDF

FPGA based POS MPPT Control for a Small Scale Charging System of PV-nickel Metal Hydride Battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Guen;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

A Comparative Analysis of Online Update Techniques for Battery Model Parameters Considering Complexity and Estimation Accuracy (배터리 모델 파라미터의 온라인 업데이트 기술 복잡도와 추정 정확도 비교 및 분석)

  • Han, Hae-Chan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.286-293
    • /
    • 2019
  • This study compares and analyzes online update techniques, which estimate the parameters of battery equivalent circuit models in real time. Online update techniques, which are based on extended Kalman filter and recursive least square methods, are constructed by considering the dynamic characteristics of batteries. The performance of the online update techniques is verified by simulation and experiments. Each online update technique is compared and analyzed in terms of complexity and accuracy to propose a suitable guide for selecting algorithms on various types of battery applications.